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The many-body dynamics exhibited by living objects include group formation within a population and

the nonequilibrium process of attrition between two opposing populations due to competition or conflict.

We show analytically and numerically that the combination of these two dynamical processes generates an

attrition duration T whose nonlinear dependence on population asymmetry x is in stark contrast to

standard mass-action theories. A minority population experiences a longer survival time than two equally

balanced populations, irrespective of whether or not the majority population adopts such an internal

grouping. Adding a third population with predefined group sizes allows TðxÞ to be tailored. Our findings

compare favorably to real-world observations.
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Predator-prey systems have been widely studied by
many disciplines, including physics [1]. Outside the few-
particle limit, mean-field mass-action equations such as
Lotka-Volterra provide a reasonable description of the
average and steady-state behavior, i.e., dNAðtÞ=dt ¼
fðNAðtÞ; NBðtÞÞ and dNBðtÞ=dt ¼ gðNAðtÞ; NBðtÞÞ, where
NAðtÞ and NBðtÞ are the A and B populations at time t.
Such population-level descriptions of living systems do not
explicitly account for the well-known phenomenon of
intrapopulation group (e.g., cluster) formation [2], leading
to intense debate concerning the best choice of functional
response terms for fðNAðtÞ; NBðtÞÞ and gðNAðtÞ; NBðtÞÞ in
order to partially mimic such effects [3]. Analogous mass-
action equations have been used to model the interesting
nonequilibrium process of attrition (i.e., reduction in popu-
lation size) as a result of competition or conflict between
two predator populations in colonies of ants, chimpanzees,
birds, Internet worms, commercial companies, and humans
[4] in the absence of replenishment. The term attrition
simply means that ‘‘beaten’’ objects become inert (i.e.,
they stop being involved), not that they are necessarily
destroyed. The combined effects of intrapopulation group-
ing dynamics and interpopulation attrition dynamics have
received surprisingly little attention [2,5], despite the fact
that grouping and attrition are so widespread [2,4] and the
fact that their coexisting dynamics generate an intriguing
nonequilibrium many-body problem.

In this Letter, we consider explicitly the effect of intra-
population grouping dynamics on the duration T of attri-
tion between two opposing populations A and B. In stark
contrast to the standard mass-action theories, we find that T
exhibits a maximum for highly asymmetric predator-
predator systems in the absence of population replenish-
ment [Fig. 1(a)]. This nonmonotonic dependence of T on
population asymmetry is remarkably insensitive to whether
the majority (i.e., larger) population exhibits internal
grouping or not [Fig. 1(b)]. We show how T can be

manipulated by the addition of a third population which
blocks encounters involving smaller fragments. Within the
physics community, Redner and co-workers had consid-
ered a related problem of conflict within a clustering
population in one dimension and highlighted intriguing
connections to a more general class of roughening phe-
nomena in physics [5]. Eguiluz, Zimmerman, and others
had considered an infinite-range one-population
coalescence-fragmentation model as a simplified version
of human opinion formation [6], while Galam and others
have considered interesting models involving competition
and conflict [7,8]. Our work focuses instead on the con-
sequences of coexisting grouping and attrition on the du-
ration T (i.e., the survival time of the minority population).
The intrapopulation group dynamics in our model are

driven by essentially the same coalescence-fragmentation
processes as Ref. [6], while the interpopulation attrition
process is essentially the same as Ref. [5] [Fig. 1(c)]. We
have checked that our main conclusions are robust to a
variety of reasonable generalizations (e.g., randomly se-
lecting groups independent of group size, attrition beyond
a simple cluster subtraction rule [5], or allowing for a
limited number of new recruits over time) and to a reason-
ably wide range of parameter space. Our model combines
the following specific mechanisms: It is well documented
that groups of objects (e.g., animals and people) may
suddenly scatter in all directions (i.e., complete fragmen-
tation) when its members sense danger, simply out of fear
[2] or in order to confuse a predator [2]. (Curiously, clus-
ters of inanimate objects, such as doubly ionized argon
atoms and animal Hox genes, also exhibit such complete
fragmentation [9].) Since a sense of danger can arise at any
time, our model randomly selects a candidate group for
fragmentation at each time step, with probability propor-
tional to its size since larger groups have more members
and hence are increasingly likely to spot danger or be
spotted themselves [2]. With probability �A or �B for
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groups of type A or B, the group fragments completely. If it
does not fragment, a second group is randomly selected
with probability again proportional to size, since any sub-
sequent coalescence and attrition events will likely be
initiated by pairwise interaction between individual mem-
bers in the two groups; hence, the probability will depend
on the number of members. If the group is of the same type
(i.e., A or B), the two groups coalesce, mimicking the
observation that groups may try to build up their size to
increase their security [2]. ‘‘Coalescence’’ can simply
mean that two groups act in a coordinated way, not neces-
sarily that they are physically joined. If of opposite type,
their interaction leaves an A or B group of size jsA � sBj if
sA > sB or sB > sA, respectively (or zero if sA ¼ sB),
where sA and sB are A and B group sizes [Fig. 1(c)].
Other forms of attrition rule (e.g., stochastic) can yield
similar results. At time t, populations A and B hence
comprise nAs ðtÞ and nBs ðtÞ groups (i.e., clusters) of size s,
where

P
snAs ðtÞ ¼ NAðtÞ and

P
snBs ðtÞ ¼ NBðtÞ. Inter-

actions are distance independent as in Ref. [6] since we
are interested in systems where messages can be trans-
mitted over arbitrary distances (e.g., modern human com-
munications). Bird calls and chimpanzee interactions in
complex tree canopy structures can also mimic this setup,
as may the increasingly longer-range awareness that arises
in larger animal, fish, bird, and insect groups [2].

Figure 1(a) shows our numerical and analytic results
[Eq. (2)] for the duration T. The initial condition for the
numerical simulations comprises isolated individuals;
however, the curve is insensitive to these initial conditions
since the initial group (i.e., cluster) formation times act like
a small additive term. The present two-population numeri-
cal implementation is a straightforward generalization of
the one-population version discussed in Ref. [6]. The ex-
cellent agreement suggests that our analytic treatment of
internal grouping using a time-averaged interaction term

may have wider application within nonequilibrium many-
body systems. Following the model mechanisms discussed
above, the probability QAB that any A cluster is selected
and interacts with a B cluster is the sum over all s of the
probability for an A cluster of size s to interact with any B
cluster, which gives ð1� �AÞNAðtÞNBðtÞ=½NAðtÞ þ NBðtÞ�2.
The probability QBA is similar, with �A replaced by �B.
After an interaction, A and B are reduced by the size of the
smallest interacting cluster, whose average value c (i.e.,
average interaction size) is well approximated by unity
plus a small linear correction term 0:2ð1þ xÞ�1ð1� xÞ�
ð1� �AÞð1� �BÞ, where the asymmetry x is defined in
Fig. 2, because clusters are generally very small over a
large proportion of T. Note c is not formally the same as
the average cluster size—in part because interactions do
not occur at every time step and the entire system is
actually time dependent—but they tend to take on similar
values. Employing constant c, the populations after i in-
teractions become NAðtÞ ¼ NAð0Þ � ic, NBðtÞ ¼ NBð0Þ �
ic. The probability for an interaction between A and B
clusters after i previous interactions is QðiÞ ¼ QAB þQBA

and hence

QðiÞ ¼ ðNAð0Þ � icÞðNBð0Þ � icÞ
ðNAð0Þ þ NBð0Þ � 2icÞ2 ð2� �A � �BÞ: (1)

To reduce NAðtÞ and NBðtÞ by c takes 1=QðiÞ time steps on
average. The time to reduce one population to zero is the
sum of the time steps required for each interaction until the
population is eliminated. Supposing B is the smaller popu-
lation, it requires NBð0Þ=c interactions to eliminate it;
hence, the final interaction happens after NBð0Þ=c� 1
previous interactions. The time T to eliminate the smaller
populationB is therefore

P
Q�1ðiÞwith i running from 0 to

NBð0Þ
c � 1. Using

P
n
1
1
i ¼ �þ c 0ðnþ 1Þ, where � is the

Euler-Mascheroni constant, c 0 is the digamma function,

FIG. 1 (color). (a) Duration T of attri-
tion (or equivalently, the extinction time
or survival time of the smaller popula-
tion) as a function of initial A population
NAð0Þ and fragmentation probability �A

(�B ¼ 0:3). Solid lines are analytic
[Eq. (2)] while the surface is a numerical
simulation.NAð0ÞþNBð0Þ¼1000.Quali-
tative features are unchanged by varying
�B. (b) Black curve: same as (a) with
�A ¼ �B ¼ 0:3. Red dashed curve: A
contains rigid units (size 10) while B
features internal dynamical grouping
(i.e., clustering) as explained in the
text. Green curve: both A and B comprise
rigid units (size 10). (c) Events in our
model. Two groups of the same type can
coalesce, e.g., 6þ 4 ¼ 10. Individual
groups can fragment, e.g., 6 ! 6� 1.
Two groups of opposite type interact,
e.g., a group of size 6� 4 ¼ 2 remains.
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and
P

n
aþ1 ¼

P
n
1 �

P
a
1 , we obtain the following duration:

T ¼ NAð0Þ � NBð0Þ
cð2� �A � �BÞ

�
4NBð0Þ

NAð0Þ � NBð0Þ
þ

�
�þ c 0

�
NBð0Þ
c

þ 1

��
�

�
c 0

�
NAð0Þ
c

þ 1

�

� c 0

�
NAð0Þ � NBð0Þ

c
þ 1

���
: (2)

When A is the smaller population, the form is identical but
with A and B interchanged. This T expression depends
only on the initial populations of A and B; hence, T �
Tðx; f�gÞ for constant N, where f�g � ð�A; �BÞ.
Differentiation yields a maximum T at xmax ’ 0:788 for
�A ¼ �B and N ¼ 103, independent of f�g. Numerical
simulations confirm that Tðx; f�gÞ � t1ðf�gÞt2ðxÞ, with
t1ðf�gÞ � 1=ð2� �A � �BÞ exactly as in Eq. (2), thereby
supporting our use of a constant average interaction size c.
Two factors therefore determine the duration T: one origi-
nates from the grouping dynamics within a given popula-
tion [i.e., t1ðf�gÞ] while the other originates from the
asymmetry [i.e., t2ðxÞ]. Replacing sums by integrals,
Eq. (2) can be approximated in the large population limit as

Tcont ¼ NAð0Þ � NBð0Þ
cð2� �A � �BÞ

�
ln
NBð0Þ½NAð0Þ � NBð0Þ þ c�

cNAð0Þ
þ 4

�
NBð0Þ � c

NAð0Þ � NBð0Þ
��

: (3)

The peak at xmax is robust to a variety of model variants and
can be understood as follows: When x� 0, clusters of A
and B are abundant and have a reasonably large average
size. Interactions between A and B clusters are frequent
and the attrition per interaction is high; hence, T is small.
As x increases, with A being the larger population, an
interaction between an A and a B cluster is increasingly
likely to eliminate the B cluster completely since the A
cluster is increasingly likely to be the larger cluster.
However, the interaction rate is decreasing rapidly, and T
increases overall. For x ! 1, it may take a long time to find
a B cluster; however, there are very few to find; hence, T
becomes smaller. Interestingly, the distribution of time
intervals between interactions of A and B clusters is ap-
proximately exponential for all x, except near xmax where it
becomes approximately power law. Note that if the attri-
tion were to end after a given fraction of the initial popu-
lation is eliminated, the same qualitative results would still
emerge since the theory is essentially invariant under over-
all changes of time scale. Figure 1(b) shows the results of A
and/or B adopting different internal grouping. The duration
T remains essentially unchanged if the larger population
chooses a static internal structure comprising rigid units of
a particular size. If the smaller population adopts such rigid
units, T decreases significantly. Hence T is largely dictated
by the internal group dynamics of the minority population.
If both A and B are internally rigid, T is small for all x.

The top red curve in Fig. 2 compares our theory to
empirical results for human conflicts, while the lower
two blue curves show the mass-action predictions. The
mass-action equations traditionally used for attrition are
[4] (1) dNAðtÞ=dt ¼ �uLNAðtÞNBðtÞ and dNBðtÞ=dt ¼
�uLNAðtÞNBðtÞ, called Lanchester’s undirected mass-
action model, and (2) dNAðtÞ=dt ¼ �dLNBðtÞ and
dNBðtÞ=dt ¼ �dLNAðtÞ, called Lanchester’s directed
mass-action model [4], where uL and dL are constants.
‘‘Old’’ wars are blue circles and ‘‘new’’ wars are red
triangles, with World War II labeled by both since it is a
natural dividing point. Since N � 1, we take the end point
for the undirected mass-action model to correspond to
reducing the smaller population to 1 instead of 0, thereby
avoiding problems with a continuum description of NAðtÞ
and NBðtÞ near 0. Figure 2 offers some support for a recent
hypothesis in the social science domain, distinguishing
between old wars in which A and B adopt traditional, fairly
rigid, military structures and new wars in which B (and
possibly A) adopt more fluid tactics akin to our model [10].
By contrast, the old wars are well described by both the
green curve of Fig. 1(b) (i.e., rigid armies) and the tradi-
tional mass-action theories (blue curves), implying that
such internal group dynamics were absent in old wars.
Figure 3(a) shows that the duration T can be manipu-

lated by adding a third-party population C which can block
interactions [Fig. 3(b)]. For simplicity, we assume the NC

members of C are permanently arranged into nC groups,
each with sC permanent members. Apart from peacekeep-
ers in human conflict, C could mimic the targeted blocking

FIG. 2 (color). Duration T of human conflicts as a function of
asymmetry x between the two opposing military populations.
x ¼ jNAð0Þ � NBð0Þj=½NAð0Þ þ NBð0Þ�. Data are up to the end
of 2008; hence, final data points for the three ongoing wars will
lie above the positions shown, as indicated by arrows. The lower
two blue lines are the mass-action results. The upper red curve
[i.e., Eq. (2)] is generated using �A ¼ �B ¼ 0:7 and ½NAð0Þ þ
NBð0Þ� fixed [as in Fig. 1(a)]. Changing �A and �B changes the
height of the theoretical peak but leaves qualitative features
unchanged.
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of interactions between particular physiological clusters. A
and B undergo dynamical clustering as before, except that
if a C group is selected and it is bigger or equal to the size
of the A and B clusters, the interaction is blocked and the
two A and B clusters are permanently pacified (i.e., neu-
tralized). Figure 3(a) shows that if C comprises only a few
large groups (e.g., green dotted curve) then T decreases
irrespective of the asymmetry. Having a few largeC groups
means that some sizable battles can be blocked; however, it
also allows the buildup of sizeable groups of both A and B,
which in turn makes the typical size of interactions bigger.
By contrast, if C comprises many small groups (e.g., red
dashed curve), T can be much larger, showing a huge
increase around x� 0. If real-time management of the C
population is possible, this duration profile can be manipu-
lated even further.

We stress that our model findings are not a simple
consequence of either dilution leading to reaction slow-
down or of the specific cluster selection scheme that we
chose. In our model, as in nature, opposing predator groups
actively seek each other out at each time step, even if their
density is low, making this unlike simple chemical dilution
and hence unlike simple mass-action equations. Regarding
cluster selection, we have verified numerically that our
main conclusions are unchanged if we select clusters in-
dependent of size or use other fragmentation schemes (e.g.,
binary splitting into two clusters). This is because the
smaller population spends the majority of the conflict as
very small groups or individuals; hence, the weighting by

size is not so important. In short, our results emerge from
the interplay between population asymmetry, the presence
of clustering, and the intentional engagement between the
two opposing populations. Although the specific conse-
quences may vary by application area, we believe that
related phenomena lying beyond mass-action predictions
will arise in a wide range of physical, chemical, biological,
and social systems whenever intrapopulation clustering
coexists with interpopulation reactions.
We thank R. Denney and M. Spagat for very useful

discussions.
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FIG. 3 (color). (a) Black curve as in Figs. 1(a) and 1(b) with A
and B undergoing internal dynamical clustering. �A ¼ �B ¼ 0:3.
Red dashed curve: nC ¼ 100 third-party groups, each of size
sC ¼ 1. Green dotted curve: nC ¼ 1 third-party group of size
sC ¼ 100. (b) Third-party blocking event. If neither A nor B
clusters are bigger than the C cluster, then the C cluster blocks
the interaction and permanently neutralizes both clusters.
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