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We show that the thermodynamic limit of a bistable phosphorylation-dephosphorylation cycle has a

selection rule for the ‘‘more stable’’ macroscopic steady state. The analysis is akin to the Maxwell

construction. Based on the chemical master equation approach, it is shown that, except at a critical point,

bistability disappears in the stochastic model when fluctuation is sufficiently low but unneglectable.

Onsager’s Gaussian fluctuation theory applies to the unique macroscopic steady state. With an initial state

in the basin of attraction of the ‘‘less stable’’ steady state, the deterministic dynamics obtained by the law

of mass action is a metastable phenomenon. Stability and robustness in cell biology are emergent

stochastic concepts.
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The statistical physics of a living cell requires a theory
for an open molecular system with a chemical driving force
and free energy dissipation [1]. Such a system is capable of
reaching a self-organizing state to which many biological
functions are attributed. The state has been widely known
as a nonequilibrium steady state (NESS) following Klein’s
concise terminology [2]. Two of the most exciting recent
developments in statistical physics are concerned precisely
with the NESS: the fluctuation theorem studies the novel
entropy production characteristics of a NESS [3]; and the
one-dimensional exclusion process deals with highly non-
trivial phase behavior [4].

However, the concept of NESS requires further refine-
ments. This is the objective of this Letter. From a statistical
mechanics perspective, a NESS is a fluctuating, stochastic,
and stationary process. It has a stationary probability dis-
tribution as well as correlation functions [5]. For a wide
class of physical and biological systems, this state is
unique [6]. However, from a macroscopic perspective, an
open, driven system can have multiple steady states. In
fact, the dynamics can be more complex that include
oscillations and spatial-temporal chaos [7].

‘‘Macroscopic’’ studies of living cell biochemistry are
usually based on deterministic nonlinear differential equa-
tions according to the law of mass action [8]. Currently, it
is generally accepted that a bistability in the deterministic
dynamics corresponds to a bimodal probability density
function in the stochastic approach [9,10]. With the in-
creasing size of chemical reaction systems [11], there is a
separation of time scale: the transition rates between the
two macroscopic states become infinitesimal �e��V ,
where V is the systems volume and� is a positive constant.
See [10] for a detailed exposition.

On the other hand, there is a well-developed, phenome-
nological fluctuation theory of NESS in statistical physics,
pioneered by Onsager and Machlup, Lax, and Keizer,

among many others [12]. One of the most important con-
clusions from this classic NESS fluctuation theory is multi-
variate Gaussian fluctuations around a NESS. This result
essentially conforms with Einstein’s equilibrium fluctua-
tion theory.
In this Letter, we shall use a concrete example to provide

insights into this seeming paradox between the current
view of NESS fluctuation, with multiple macroscopic
steady states, and the classic Einstein-Onsager-Lax-
Keizer (EOLK) Gaussian theory. Using the chemical mas-
ter equation (CME) as the tool and a bistable system from
current biochemical literature, we show that as V ! 1, a
Maxwell-like construction is necessary. Such a construc-
tion effectively singles out one unique state (or an attractor
in the case of more complex dynamics) in the thermody-
namic limit. It is around this state that the EOLK theory
applies. Our analysis confirms the claim that the informa-
tion necessary for the Maxwell-type construction is not
present in the deterministic differential equation model of
the system [13]; one requires building a mesoscopic,
mechanistic model with stochasticity in order to gain the
required information. Our conclusion is that, when dealing
with biochemical reaction systems, one needs to differ-
entiate the thermodynamic limit of a mesoscopic system
and the differential equations based on the law of mass
action. The latter follows Kurtz’s theorem [14,15]; the
thermodynamic limit, however, has to augment the
Maxwell construction, based on which the EOLK fluctua-
tion theory applies.
Several papers have addressed related issues in the past.

We choose to revisit these important and fundamental
issues in NESS due to the recent resurgent interests in
the CME and its applications to cellular biochemistry. In
addition to [13], Keizer developed Maxwell-type construc-
tions for multiple nonequilibrium steady states [16]. While
the present Letter shares a similar idea, the previous ap-
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proach was based on the diffusion approximation to a
CME, an approach that can fail to represent correctly the
mesoscopic steady state [17], now known as Keizer’s para-
dox [10].

The analysis performed here is for a particular example
of a biochemical cycle, but what we show is general for
nonlinear, driven chemical reaction systems with
multistability.

Phosphorylation-dephosphorylation cycle and the
CME.—Biochemical information processing inside cells
uses a canonical reaction system called the
phosphorylation-dephosphorylation cycle [15]. We con-
sider the Ferrell’s kinetic model for the phosphorylation-
dephosphorylation cycle [18], which includes a positive
feedback step, and its reversible extension first studied in
[19]:

Eþ ATPþ K� Ða1
a�1

E� þ ADPþ K�; K þ 2E� Ða3
a�3

K�;

E� þ PÐa2
a�2

Eþ Pi þ P; (1)

in which E and E� are inactive and active forms of a
signaling protein. K and P are enzymes, kinase, and phos-
phatase, that catalyze the phosphorylation and dephos-
phorylation, respectively. K and K� are active and inactive
forms of the kinase. The chemical reaction of ATP
hydrolysis ATP Ð ADPþ Pi provides the chemical
driving force of the reaction. In fact the free energy
from the reaction is �G ¼ kBT lnfa1a2½ATP�=
ða�1a�2½ADP�½Pi�Þg. In a cell, K and P, ATP, ADP, and
Pi are all at constant concentrations, and ½E� þ ½E�� ¼ etot.
[z] denotes the concentration of the species z.

The system in (1) exhibits bistability according to a
deterministic analysis based on the law of mass action
[18]. It has been further shown that the bistability is dis-
tinctly a driven phenomenon that requires a sufficient large
free energy dissipation [19]. Here we consider its meso-
scopic stochastic model in terms of the CME [15].

We shall denote k1 ¼ a1a3½ATP�=a�3, k�1 ¼
a�1a3½ADP�=a�3, k2 ¼ a2½P�, and k�2 ¼ a�2½Pi�½P�.
Following the previous treatment [15,18,19], we assume
the reversible binding K þ 2E� Ð K� is rapid. The model
thus is simplified into E Ð E� with forward and backward
rates RþðxÞ ¼ ðk1½K�x2 þ k�2Þðetot � xÞ, R�ðxÞ ¼
ðk2 þ k�1½K�x2Þx, and xðtÞ ¼ ½E��ðtÞ. The energy parame-
ter from ATP hydrolysis � ¼ expð�G=kBTÞ ¼
k1k2=ðk�1k�2Þ. � ¼ 1 is equivalent to a nondriven system
which reaches a unique equilibrium steady state. In fact,
the equilibrium probability distribution for the number of
E� is binomial.

The deterministic kinetic model based on the law of
mass action is

dx

dt
¼ RþðxÞ � R�ðxÞ ¼ rðx; �; �Þ
¼ k2f�x2½ðetot � xÞ � �x� þ ½�ðetot � xÞ � x�g; (2)

in which the three parameters � ¼ k1½K�=k2 represents the
ratio of the activity of the kinase to that of the phosphatase;
� ¼ k�1=k1 represents the ADP to ATP concentration
ratio, and� ¼ k�2=k2 represents the strength of phosphor-
olysis. In a living cell, both � and � are small; hence � ¼
1=ð��Þ � 1.
The fixed points of Eq. (3) are the solution to RþðxÞ ¼

R�ðxÞ. Their stability is determined by the d
dx �

½RþðxÞ � R�ðxÞ�. For some parameter ranges, Eq. (3) ex-
hibits saddle-node bifurcations [18,19], as shown in Fig. 1.
One obtains the parameter region for the bistability from

simultaneously solving rðzÞ ¼ 0 and drðzÞ
dz ¼ 0, which gives

the boundary of the region of bistability, with a cusp, in (�,
�) space (in terms of z as a parametric curve):

�¼2ð1þ�Þ
zetot

�3�

z2
; �¼ 2�e2tot�ð�þ1Þzetot

3�etotz�2ð�þ1Þz2�1: (3)

For the stochastic model in terms of the CME, one is
interested in the number of E�, X, rather than its concen-
tration. X takes non-negative integer values and is related
to x ¼ X=V where V is the system’s volume. While XðtÞ is
stochastic, its probability, PðX; tÞ, satisfies the CME [15]:

@PðX; tÞ
@t

¼ VRþ
�
X � 1

V

�
PðX � 1; tÞ þ VR�

�
X þ 1

V

�

� PðX þ 1; tÞ � V

�
Rþ

�
X

V

�
þ R�

�
X

V

��
PðX; tÞ:

Its stationary solution gives the probability distribution in
the NESS:

PssðXÞ ¼ Psð0Þ
YX
i¼1

Rþði�1
V Þ

R�ð iVÞ
: (4)

Maxwell-type construction and stochastic bifurcation.—
When V is large, by the Euler-MacLaurin summation
formula,

FIG. 1. Bifurcation diagram of the steady states of the reaction
system in Eqs. (1) and (2), x�, as a function of the parameter k1.
SN denotes saddle-node bifurcation. Other parameters in the
calculation: ½K� ¼ 1, etot ¼ 1, k�1 ¼ 0:01, k2 ¼ 10, k�2 ¼ 0:5.
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PssðxVÞ / Ae�V�ðxÞ; (5)

where

�ðxÞ ¼ �
Z x

log

�
RþðyÞ
R�ðyÞ

�
dy

¼ etot lnðetot � xÞ � x ln

�ðetot � xÞð�x2 þ�Þ
xð��x2 þ 1Þ

�

� 2

ffiffiffiffi
�

�

r
arctan

� ffiffiffiffi
�

�

s
x

�
þ 2ffiffiffiffiffiffi

��
p arctan

ffiffiffiffiffiffi
��

p
x: (6)

We note that

d�ðxÞ
dx

¼ � log½RþðxÞ=R�ðxÞ�

¼ � ln
ðetot � xÞð�x2 þ�Þ

xð��x2 þ 1Þ ;

hence the two stable fixed points of Eq. (3) correspond to
the two minima of �ðxÞ, and the unstable one corresponds
to a maximum. In fact, for each steady state x�,

�00ðx�Þ ¼ 1

x�

�d logR�ðxÞ
RþðxÞ

d logx

�
x¼x�

; (7)

which has the same sign as dðR� � RþÞðx�Þ=dx. x� is
stable if �00ðx�Þ> 0, and unstable otherwise. Near a stable
x�

�ðxÞ ¼ �ðx�Þ þ�00ðx�Þ
2

ðx� x�Þ2 þ � � � : (8)

The Gaussian variance of PssðxÞ is ½V�00ðx�Þ��1 which
tends to zero when V tends to infinity.

The square bracket term in (7) is called elasticity [20]
due to its analogue to classical mechanics. Near the ‘‘more
stable’’ fixed point of Eq. (3), for a system with large V, a
Gaussian, linear approximation is warranted. This is the
classic theory of EOLK [12]. The key insight of this theory
is the so-called fluctuation-dissipation theorem for the
NESS, a consequence of the Markovian Gaussian process.
It provides a relationship among the linear relaxation ki-
netic matrix, the noise amplitude, and the covariance ma-
trix of the Gaussian process. In a similar spirit, Berg,
Paulsson, and Ehrenberg have put forward a linear noise
approximation [20]. Reference [21] has further illustrated
that Gaussian characteristics are not necessarily only re-
lated to equilibrium fluctuations. Rather, they are deter-
mined by linear dynamics near a steady state [22].

To our current discussion, the most important feature of
Eq. (5) is that the function �ðxÞ is independent of V,
provided that V is sufficiently large. Therefore, even
though �ðxÞ exhibits bistability which corresponds closely
to Eq. (3), when V ! 1, only one of the two stable fixed
points is relevant in the thermodynamic limit, and it is the
one with smaller�ðxÞ. AMaxwell-like construction, there-
fore, is necessary at the critical k1 when �ðx�1Þ ¼ �ðx�2Þ.
See Fig. 2.

It should be emphasized that bistability in the CME is
really a nonequilibrium phenomenon. The metastability,
however, can exist even when the white noise is ‘‘addi-
tive.’’ An example is a diffusive particle restricted in a
bistable potential with vanishing diffusivity [23].
Discontinuity of stochastic entropy production and first-

order phase transition.—A biochemical NESS is sustained
by a continuous input of chemical energy which is con-
verted to dissipated heat. The entropy production rate
(EPR) can be computed [10]:

EPR

V
� 4GR1

0 e�V�ðxÞdx

�
Jss1

Z x�
1
þ�

x�
1
��

e�V�ðxÞdx

þ Jss2

Z x�2þ�

x�
2
��

e�V�ðxÞdx
�
: (9)

When V tends to infinity, EPR=V tends to 4GJss1 if

�ðx�1Þ<�ðx�2Þ, and tends to 4GJss2 if �ðx�2Þ<�ðx�1Þ.
Since Jss1 � Jss2 , the EPR=V is discontinuous at the critical
situation when �ðx�1Þ ¼ �ðx�2Þ.
In classical equilibrium phase transition theory, a first-

order phase transition has a discontinuity in the first de-
rivative of the free energy, and a second-order phase tran-
sition has a discontinuity in the second derivative.
According to this classification, the present (nonequilib-
rium) phase transition can be considered as first order.
Summary.—A state of a biological cell, called a func-

tional cellular attractor [10], should be dynamically stable
against various minor perturbations which are inevitable in

FIG. 2. Stationary distribution of CME and Maxwell construc-
tion. (a) The shape of �ðxÞ varies with the parameter k1;
(b) approximated stationary distribution of CME according to
Eq. (5) varies with the volume with parameter value k1 ¼ 50;
(c) exact stationary distribution of CME according to Eq. (4)
varies with the volume with parameter value k1 ¼ 50; (d) the
saddle-node (SN) bifurcation diagram for steady states and the
Maxwell construction (MC). Other parameters used in the cal-
culation: ½K� ¼ 1, etot ¼ 1, k�1 ¼ 0:01, k2 ¼ 10, k�2 ¼ 0:5.
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living systems. Thus, it is often thought that ‘‘noise’’ added
to the biological models only provides moderate refine-
ments to the behaviors otherwise predicted by the classical,
deterministic description. The present Letter, however,
shows something deeper: the relative stability and robust-
ness of the phosphorylation-dephosphorylation module
cannot be properly inferred without an explicit considera-
tion of the intrinsic noise in the model. In cellular biology,
it is incorrect to model biological stability and robustness
in terms of deterministic trajectories or sizes of basins of
attractors from a deterministic model. Biological stability
and robustness are stochastic concepts. Hence the presence
of noise not only leads to corrections to the deterministic
analysis but may give rise to emergent behaviors.

The CME has now been recognized as a fundamental
mathematical theory for mesoscopic chemical and bio-
chemical reaction systems in a small, spatially homoge-
neous volume [15]. Its large volume limit recovers the law
of mass action kinetics [14]. However, the deterministic
differential equations, while defining various attractors,
provide no information on the relative probabilities be-
tween them [13]. Furthermore, in the thermodynamic limit
only one of the attractors will be dominant with probability
1. The Maxwell-type construction, thus, enters the CME
and becomes an integral part of a more complete theory.
The biochemically interesting emergent dynamics from a
CME, thus, is not the deterministic differential equations,
but rather a stochastic jump process within a set of discrete
states defined by the deterministic attractors. This is dis-
tinctly a mesoscopic [24] driven system phenomenon:
when the volume is too large, the time of escaping an
attractor is practically infinite. Thus, the complex dynam-
ics disappears. When there is no chemical driving force,
i.e., � ¼ 1, the multistability disappears [10]. Near a given
attractor which is a deterministic fixed point, the EOLK
phenomenological Gaussian fluctuation theory applies
[12]. Furthermore, the macroscopic driven system in
NESS can behave like an equilibrium system with a (non-
gradient) potential [25].
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