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We develop a simple scaling theory for the effect of Hund’s interactions on the Kondo effect, showing

how an exponential narrowing of the Kondo resonance develops in magnetic ions with large Hund’s

interaction. Our theory accounts for the exponential reduction of the Kondo temperature with spin S of the

Hund’s coupled moment, first observed in d-electron alloys in the 1960s, and more recently encountered

in numerical calculations on multiband Hubbard models. We discuss the consequences of Kondo

resonance narrowing for the Mott transition in d-band materials, particularly iron pnictides, and the

narrow ESR linewidth recently observed in ferromagnetically correlated f-electron materials.
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The theory of the Kondo effect forms a cornerstone in
the current understanding of correlated electron systems
[1]. Four decades ago, experiments on d-electron materials
found that the characteristic scale of spin fluctuations of
magnetic impurities, known as the Kondo temperature,
narrows exponentially with the spin S of the impurity [2]
(Fig. 1). Though a tentative explanation of this effect was
proposed [2], based on an observation by Schrieffer [3] that
strong Hund’s coupling suppresses the Kondo coupling
constant, interest in this phenomenon waned and remark-
ably, no subsequent theoretical treatment was written. Mo-
tivated by a resurgence of interest in f- and d-electron
systems, especially quantum critical heavy electron sys-
tems [4], and pnictide superconductors [5], this Letter
revisits this little-known phenomenon, which we refer to
as ‘‘Kondo resonance narrowing,’’ in a modern context.

The consequences of Kondo resonance narrowing have
recently been rediscovered in calculations on multiorbital
Hubbard and Anderson models [6,7]. Numerical renormal-
ization group studies found that the introduction of Hund’s
coupling into the Anderson model causes an exponential
reduction in the Kondo temperature [6]. The importance of
Hund’s effect has also arisen in the context of iron pnictide
superconductors [8,9], where it appears to play a key role
in the development of a ‘‘bad metal’’ state in which the d
moments remain unquenched down to low temperatures.

In this Letter, we show that Kondo resonance narrowing
can be simply understood within a scaling theory descrip-
tion of the multichannel Kondo model with Hund’s inter-
action. The main result is an exponential decrease of the
Kondo temperature that develops when localized electrons
lock together to form a large spin S, given by the formula

lnT�
KðSÞ ¼ ln�0 � ð2SÞ ln

�
�0

TK

�
: (1)

Here, TK is the ‘‘bare’’ spin 1=2 Kondo temperature and
�0 ¼ minðJHS;Uþ Ed; jEdjÞ is the scale at which the
locked spin S develops under the influence of a Hund’s
coupling, JH, while U and Ed are the interaction strength
and position of the bare d level. Although the germs of an

explanation are implicitly contained in the early works of
Schrieffer [3] and Hirst [10], a theoretical treatment of the
effect of a finite JH has not previously been given.
To develop our theory, we consider K Hund’s-coupled

spin 1=2 moments at a single site, each interacting with a
conduction electron channel of bandwidth D via an anti-
ferromagnetic interaction J:

H ¼ X
k;�;�
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y
k��ck�� � JH

�XK
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2 þ J

XK
�¼1

s� � ��;
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where "k is the conduction electron energy,� ¼ 1,K is the

channel index and �� ¼ P
kc

y
k�����ck�� is the conduc-

tion electron spin density in channel � at the origin. We
implicitly assume that Hund’s scaleKJH is smaller thanD.
When derived from an Anderson model of K spin-1=2
impurities, then D ¼ minðEd þU; jEdjÞ is the crossover
scale at which local moments form while J ¼
jVkF j2ð1=ðEd þUÞ þ 1=jEdjÞ is the Schrieffer-Wolff form

of the Kondo coupling constant [1], where VkF is the Fermi

surface averaged hybridization.

FIG. 1 (color online). Measured values [22] of the Kondo
temperature T�

K in host alloys Au, Cu, Zn, Ag, Mo, and Cd
with transition metal impurities, plotted vs the nominal size S of
the spin. The solid line is the fit to Eq. (1) with �0 � JHS.
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The behavior of this model is well understood in the two
extreme limits [11]: for JH ¼ 1, theK spins lock together,
forming a K-channel spin S ¼ K=2 Kondo model. The
opposite limit JH ¼ 0 describes K replicas of the
spin-1=2 Kondo model. Paradoxically, the leading expo-
nential dependence of the Kondo temperature on the cou-

pling constant TK �De�1=2J� in these two limits is
independent of the size of the spin. However, as we shall
see in the crossover between the two limits, the projection
of the Hamiltonian into the space of maximum spin leads
to a (2S)-fold reduction in the Kondo coupling constant.

We study the properties of this model as a function
of energy cutoff �. We expect three regions depicted in
Fig. 2(a): (I) � � JHS: a spin-1=2 disordered paramagnet
characterized by a Curie magnetic susceptibility

�IðTÞ ¼ K
ð3=4Þðg�BÞ2

3kBT
; (3)

with effective moment ð�I
effÞ2 ¼ 3K=4;

(II) T�
K � � � JHS: an unscreened big spin S ¼ K=2 is

formed above an emergent Kondo energy scale T�
K;

(III) � � T�
K: the Nozières Fermi liquid ground state of

the K-channel S ¼ K=2 Kondo problem.
We employ the ‘‘poor man’s scaling’’ approach [1,12],

in which the renormalization group (RG) flows are fol-
lowed as conduction electrons are progressively decimated
from the Hilbert space. Computing the diagrams shown in
Fig. 3, we obtain the following RG equations in region I:

ðIÞ: dðJ�Þ
d ln�

¼ �2ðJ�Þ2 þ 2ðJ�Þ3; (4)

dðJH�Þ
d ln�

¼ 4ðJ�Þ2JH�; (5)

where � is the density of states of the conduction electrons
at the Fermi level. The first equation is the well-known beta
function for the Kondo model, which to this order is
independent of Hund’s coupling. As we decimate the con-
duction sea, reducing the bandwidth� down to the Hund’s
scale JHS, to leading logarithmic order we obtain

�Jð�Þ ¼ 1

lnð�TK
Þ
���������¼JHS

� �JI: (6)

There is a weak downward-renormalization of the Hund’s
coupling JH described by Eq. (5), originating in the two-
loop diagrams [Fig. 3(c)]. To leading logarithmic approxi-
mation, we may approximate JH by a constant.
Once � is reduced below JHS, the K local moments

become locked into a spin S ¼ K=2, as discussed in
Ref. [13] for the case of two impurities coupled by ferro-
magnetic RKKY interaction. The low-energy properties of
the system in region II are described by a Kondo model of
spin K=2 with K conduction electron channels:

HII
eff ¼

X
k;�;�

"kc
y
k��ck�� þ J�ð�Þ X

K

�¼1

S � ��: (7)

To obtain the value of J�, we must project the original
model into the subspace of maximum spin S. By the
Wigner-Eckart theorem, any vector operator acting in the
basis of states jSzi of spin S ¼ K=2 is related by a constant
prefactor to S itself:

hSSzjs�jSSzi ¼ gShSzjSjSzi: (8)

Summing both sides of the equation over impurity index
� ¼ 1; . . . ; K, one obtains hSSzj

P
�s�jSSzi ¼ gSKSz.

However since
P

�s� ¼ Ks � S, one arrives at the con-

clusion that gSK ¼ 1, therefore determining the value of
the constant coefficient gS ¼ 1=K in Eq. (8). Comparing

FIG. 2 (color online). (a) Schematic showing the behavior of
the running coupling constant geffð�Þ ¼ Jð�Þ�Keff on a loga-
rithmic scale, with Keff the effective number of conduction
electron channels per impurity spin (Keff ¼ 1 in region I and
K in regions II and III). (b) Schematic showing effective moment
�2

effðTÞ ¼ T�ðTÞ in terms of the susceptibility �ðTÞ, showing the
enhancement (15) in region II and the loss of localized moments
due to Kondo screening in region III.

FIG. 3. The diagrams appearing in (a) one-loop and (b) two-
loop RG equations for Kondo coupling J (open circles). Solid
lines denote the conduction electron propagators and dashed
line—the impurity spin. (c) The lowest order diagrams in the
RG flow of Hund’s coupling (square vertex denotes bare JH).
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Eqs. (2) and (7), we arrive at the effective Kondo coupling:

J� ¼ J=K: (9)

This equation captures the key effect of crossover from
region I to region II in Fig. 2. This result was first derived in
the early work on the multichannel Kondo problem by
Schrieffer [3], where the limit of JH ! 1 was implicitly
assumed, and also appears for the particular case of K ¼ 2
in the study of the two-impurity Kondo problem [13].

To one-loop order, the scaling equation for J�ð�Þ in
region II is identical to that of region I (4), namely
dðJ��Þ=d ln� � �2ðJ��Þ2, though its size is K times
smaller. To avoid the discontinuous jump in coupling
constant at the crossover, it is more convenient to consider
geff � Jð�Þ�Keff , where the effective number of channels
Keff ¼ 1 and K in regions I and II, respectively. This
continuous variable satisfies

ðIIÞ: dgeff
d ln�

¼ � 2

K
g2eff þ

2

K
g3eff ; (10)

so the speed at which it scales to strong coupling becomes
K times smaller in region II [see Fig. 2(a)]. Solving this RG
equation to leading order, and setting geffð� ¼ T�

KÞ � 1,

we obtain T�
K � ðJHSÞðD=JHSÞKe�ðK=2J�Þ for the renor-

malized Kondo scale. Comparing this with the bare

Kondo scale TK �De�1=2J�, we deduce

T�
K � JHS

�
TK

JHS

�
K � TK

�
TK

JHS

�
K�1

; (11)

from which formula (1) follows. This exponential suppres-
sion of the spin tunneling rate can be understood as a result
of a 2S-fold increase in the classical action associated with
a spin flip.

These results are slightly modified when the two-loop
terms in the scaling are taken into account. The expression

for TK now acquires a prefactor, TK ¼ D
ffiffiffiffiffiffi
J�

p
e�1=2J� and

JH is weakly renormalized so that

T�
K ¼ ð~JHSÞ

�
TKffiffiffiffi
K

p
~JHS

�
K
; (12)

where ~JH is determined from the quadratic equation

x2 � x

�
x0 þ 4

lnðD=TKÞ
�
þ 4 ¼ 0; (13)

where x ¼ lnð~JHS=TKÞ and x0 � lnðJHS=TKÞ.
The magnetic impurity susceptibility in region II is

��
imp¼

ðg�BÞ2
3kBT

SðSþ1Þ
�
1� 1

lnð TT�
K
ÞþO

�
1

ln2ð TT�
K
Þ
��

; (14)

from which we see that the enhancement of the magnetic
moment at the crossover is given by [see Fig. 2(b)]

ð�II
eff=�

I
effÞ2 ¼ ðK þ 2Þ=3: (15)

When the temperature is ultimately reduced below the
exponentially suppressed Kondo scale T�

K, the big spins S
become screened to form a Nozières Fermi liquid [14]. A
phase-shift description of the Fermi liquid predicts that

[11,15] the Wilson ratio W � �imp

�0
=
�imp

�0
is given by

WK ¼ 2ðK þ 2Þ
3

� 2

�
�II

eff

�I
eff

�
2
; (16)

which, compared with the classic result W1 ¼ 2 for the
one-channel model [14], contains a factor of the moment
enhancement. This result holds in the extreme limit JH �
TK. More generally,W depends on the ratio � ¼ U�=J�H of
a channel-conserving interaction U� to an interchannel
Hund’s coupling J�H in the Fermi liquid phase-shift analy-
sis, giving rise to

WKð�Þ ¼ 2

�
1þ K � 1

2ð1þ �Þ þ 1

�
: (17)

On general grounds we expect �� TK=JH.
We end with a discussion of the broader implications of

Kondo resonance narrowing for d- and f-electron materi-
als. This phenomenon provides a simple explanation of the
drastic reductions in spin fluctuation scale observed in the
classic experiments of the 1960s [2], confirming the im-
portant role of Hund’s coupling. One of the untested pre-
dictions of this theory is a linear rise of the Wilson ratioW
with spin S ¼ K=2 (16), from a valueW½1	 ¼ 2:7 in Ti and
Ni, to W½5=2	 ¼ 4:7 in Mn impurities. Together with the
early data (Fig. 1), we are able to essentially confirm the
early speculation [3] that without Hund’s coupling, the
Kondo effect would take place at such high temperatures
that dilute d-electron magnetic moments would be unob-
servable. This is the situation for S ¼ 1 Ti impurities in
gold, where the Kondo temperature is so high that mag-
netic behavior is absent. On the other hand, Kondo reso-
nance narrowing due to Hund’s interaction can become so
severe, that the reentry from region II into the quenched
Fermi liquid is too low to observe. This is the case for S ¼
5=2 Mn in gold, where T�

K is so low that it has never been
observed; the recent observation of a ‘‘spin frozen phase’’
in dynamical mean-field theory (DMFT) studies [7] may be
a numerical counterpart.
What then, are the possible implications for dense

d-electron systems? In those materials, the ratio of
Kondo temperature to the Hund’s coupling will be strongly
dependent on structure, screening, and chemistry. In cases
where JH � TK, the physics of localized magnetic mo-
ments will be lost and the d electrons will be itinerant. On
the other hand, the situation where JH � TK will almost
certainly lead to long range magnetic order with localized
d electrons. Thus in multiband systems, the criterion JH �
TK determines the boundary between localized and itiner-
ant behavior, playing the same role as the condition
U=D� 1 in one-band Mott insulators.
These issues may be of particular importance to the

ongoing debate about the strength of electron correlations
in the FeAs superconductors [5,16–18]. Current wisdom
argues that in a multiband system, the critical interaction
Uc necessary for the Mott metal-insulator transition grows
linearly with the number of bands N [19,20], favoring a
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viewpoint that iron pnictides are itinerant metals lying far
from the Mott regime.

In essence, Hund’s coupling converts a one-channel
Kondo model to a K-channel model (7). Large-N treat-
ments of these models show that the relevant control
parameter is the ratio K=N [21], rather than 1=N. By
repeating the large-N argument of Florens et al. [19], we
conclude that the critical value of the on-site interaction U
for the Mott transition is

Uc / ðN=KÞV2
kF
�: (18)

Thus Hund’s coupling restores Uc to a value comparable
with one-band models. Recent DMFT calculations on the
two-orbital Hubbard model [6] support this view, finding
that Uc is reduced by a factor of 3 when JH=U ¼ 1=4.

LDAþ DMFT studies of iron pnictide materials [9]
conclude that in order to reproduce the incoherent bad
metal features of the normal state, a value of JH �
0:4 eV is required, resulting in T�

K � 200 K. Fitting to
Eq. (11) results in a nominal TK � 3000 K and a ratio
TK=JHS� 0:4. By contrast, for dilute Fe impurities in
Cu [22] T�

K � 20 K, from which we obtain TK=JHS�
0:2 and TK � 3500 K. The bare Kondo temperature is
essentially the same in both cases, but TK=JHS is signifi-
cantly increased due to screening of JH in the iron pnic-
tides, placing them more or less at the crossover JH � TK.
A further sign of strong correlations in iron pnictides
derives from the Wilson ratio, known to be �1:8 in
SmFeAsO [23] and about 4–5 in FeCrAs [24], whereas
Eq. (16) would predict W ¼ 4.

Finally, we discuss heavy f-electron materials, which lie
at the crossover between localized and itinerant behavior
[25]. In these materials, spin orbit and crystal field inter-
actions dominate over Hund’s interaction. In fact, crystal
fields are also known to suppress the Kondo temperature in
f-electron systems [26], but the suppression mechanism
differs, involving a reduction in the spin symmetry rather
than a projective renormalization of the coupling constant.
But the main reason that Hund’s coupling is unimportant at
the single-ion level in heavy f-electron materials, is be-
cause most of them involve one f electron (e.g., Ce) or one
f hole in a filled f shell (Yb, Pu), for which Hund’s
interactions are absent.

Perhaps the most interesting application of Kondo reso-
nance narrowing to f-electron systems is in the context of
intersite interactions. Indeed, (2) may serve as a useful
model for a subset of ferromagnetically correlated
f-electron materials, such as CeRuPO [27], where JH
would characterize the scale of ferromagnetic RKKY in-
teractions between moments, as in Ref. [13]. In these
systems, our model predicts the formation of microscopic
clusters of spins which remain unscreened in region II
down to an exponentially small scale �T�

K. This exponen-
tial narrowing of the Kondo scale may provide a clue to the
observation [28,29] of very narrow ESR absorption lines in
a number of Yb and Ce heavy fermion compounds with
enhanced Wilson ratios. In particular, our theory would

predict that the Knight shift of the electron g factor in
region II is proportional to the running coupling constant
KðTÞ / geffðTÞ � 1= lnðT=T�

KÞ, where T�
K is the resonance-

narrowed Kondo temperature. A detailed study of the ESR
line shape in this context will be a subject of future work.
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