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We investigate how spins relax in intrinsic graphene. The spin-orbit coupling arises from the band

structure and is enhanced by ripples. The orbital motion is influenced by scattering centers and ripple-

induced gauge fields. Spin relaxation due to Elliot-Yafet and Dyakonov-Perel mechanisms and gauge

fields in combination with spin-orbit coupling are discussed. In intrinsic graphene, the Dyakonov-Perel

mechanism and spin flip due to gauge fields dominate and the spin-flip relaxation time is inversely

proportional to the elastic scattering time. The spin-relaxation anisotropy depends on an intricate

competition between these mechanisms. Experimental consequences are discussed.
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Graphene can be useful in future advanced applications
because of its reduced dimensionality, long mean free
paths and phase coherence lengths, and the control of the
number of carriers [1]. Among possible applications, gra-
phene is investigated as a material for spintronic devices
[2–8]. Spintronics aims to inject, detect, and manipulate
the electron spin in electronic devices.

Spin manipulation via the spin-orbit (SO) coupling has
been extensively discussed in semiconductors and metals
[9]. The SO coupling enables electric, and not just mag-
netic, control of the spin [10]. In two dimensional (2D)
semiconducting structures, inversion asymmetry results in
the Rashba SO coupling [11]. Additionally, bulk inversion
asymmetry in A3B5 compounds causes the Dresselhaus SO
coupling [12]. Device performance is limited by spin re-
laxation and understanding its origin enables enhanced
spin control. Two mechanisms of spin relaxation discussed
in the literature [9,13], the Elliot-Yafet [14,15] and
Dyakonov-Perel [16,17] mechanisms, can be relevant in
graphene.

Elliot-Yafet (EY) spin relaxation is related to how the
spin changes its direction during a scattering event [14,15].
This is possible because the SO coupling produces elec-
tronic wave functions that are admixtures of spin and
orbital angular momentum. Dyakonov-Perel (DP) [16,17]
spin relaxation is related to spin precession between scat-
tering events by the effective (Zeeman) magnetic field
induced by the SO coupling. This SO induced effective
(Zeeman) magnetic field changes direction during scatter-
ing. In the EY mechanism, the spin-relaxation time is
proportional to the elastic scattering time �el, �

EY
so / �el,

whereas the dependence is opposite �DPso / ð�elÞ�1 for the
DP mechanism. This qualitative difference allows detec-
tion of these two competing mechanisms in disordered
samples.

Recently, spin transport and spin relaxation were studied
in relatively dirty graphene samples [3,18]. A spin-
relaxation length �sf � 2 �m was measured at room tem-

perature and it was indicated that �sf is proportional to the
elastic mean free path lel, suggesting the EY mechanism to
be dominant [3,18]. The measured spin-relaxation length is
weakly anisotropic, such that spins ‘‘out of plane’’ relax
20% faster than spins ‘‘in plane’’ [18]. These experiments
motivate a study to see if known spin-relaxation mecha-

FIG. 1 (color online). (a) Dyakonov-Perel spin relaxation: The
SO coupling induces a momentum dependent effective field ~Bk
which changes direction randomly after scattering events, lead-
ing to spin relaxation. ~Bk is ‘‘in plane’’ so spins directed

perpendicular to the plane relax faster than as spins in the plane.
(b) Gauge-field spin relaxation: Gauge fields due to ripples (light
and gray blue areas) induce an effective field B?, which for a
finite SO coupling leads to spin relaxation. ~B? is ‘‘out of plane’’
so spins directed perpendicular to the plane relax slower than
spins in the plane.
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nisms, or possibly novel effects, dominate spin scattering
in graphene.

In this Letter, we consider spin relaxation in intrinsic
graphene arising from three ingredients: (i) The SO inter-
action arises from the band structure and can be enhanced
by graphene corrugations, (ii) spin isotropic scattering
centers cause momentum relaxation, (iii) topological lat-
tice disorder induce gauge fields that change the orbital
motion. First, we study the Elliot-Yafet and Dyakonov-
Perel mechanisms for this model ignoring effects of gauge
fields. Second, we find that a unique interplay of SO and
gauge fields (GF) due to topological disorder causes spin
relaxation. Our main findings are that DP and GF mecha-
nisms are comparable and dominate the EY mechanism in
intrinsic graphene. Interestingly, the DP mechanism im-
plies that spins out of plane relax twice as fast as spins in
plane, but GF exhibits the opposite behavior, spins in plane
relax faster than spins out of plane (see Fig. 1 for details).
The spin-relaxation anisotropy depends on the intricate
competition between the DP mechanism and GF. Our
results are valid for relatively clean graphene samples
where, e.g., adatoms do not alter the SO coupling.

Spin-orbit coupling.—There are Rashba and
Dresselhaus ‘‘like’’ SO interactions in graphene and we
disregard the latter [10,19,20]. The total Hamiltonian reads
(@ ¼ 1)

H ¼ �vFkð ~n � �̂Þ � �

2
ð�̂� ŝÞz; (1)

where ¼ þð�Þ corresponds to the KðK0Þ point, the spinor
basis for K is �K ¼ ðA"; A#; B"; B#ÞT and for K0 the com-

ponents are reversed, �K0 ¼ ðB"; B#; A"; A#ÞT , A and B de-

note the lattice sites and " and # the electron spin. With this
choice, the SO coupling is identical for K and K0. ~n ¼
ðcos�; sin�Þ, tan� ¼ ky=kx, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the quasipar-

ticle momentum with respect to the KðK0Þ corners of the
hexagonal Brillouin zone, � ¼ �curv þ �E [19] is the
dominant Rashba SO coupling constant induced by curva-
ture and/or external electric fields [19] and �̂ ¼ ð�̂x; �̂yÞ,
ŝ ¼ ðŝx; ŝyÞ correspond to Pauli matrices in sublattice and

spin space, respectively. The eigenstates of (1) for the K
valley are

j�k�si ¼ N�s

�
s

c�s

cse
i�

� �
ij"i þ cse

i�

c�se
2i�

� �
j#i
�
ei

~k� ~r

with energies Ek�s ¼ s�so=2þ �D, D ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvFkÞ2 þ �2=4
p

, where s ¼ � corresponds to the " ð#Þ
spin states and � ¼ � denotes the pseudospin degeneracy,

ck�s ¼
ffiffiffiffiffiffiffiffiffi
Ek�s

p
=

ffiffiffiffiffiffiffi
2D

p
, cs � ck�s and N�s ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Ek�s

p
=ðvFkÞ.

These eigenstates are polarized in plane of the graphene
layer. The spin precession length is lprec ¼ 2�vF=�.

Elliot-Yafet mechanism.—The ‘‘Rashba’’ SO coupling
can change the spin orientation during a scattering event
as is typical for the EY mechanism. We study this effect by
a decomposition into partial waves with a well defined

orbital angular momentum discussed in [21]. Neglecting
mixing of the K and K0 valleys, an incoming wave with
total angular momentum, L � Ii@� � �z=2þ sz=2, is an
eigenstate of Eq. (1):

�in
k�þðr; �Þ �

c�JnðkrÞein�
cþJnþ1ðkrÞeiðnþ1Þ�

 !
ij"i

þ cþJnþ1ðkrÞeiðnþ1Þ�

c�Jnþ2ðkrÞeiðnþ2Þ�

 !
j#i (2)

with c� as defined earlier and JnðxÞ is a Bessel function.
We analyze here weak scatterers, where the elastic scatter-
ing rate scales as ��1

el � EF. Strong and resonant Coulomb

scatterers [21] induce a similar change in the spin orienta-
tion. We approximate the potential by a step function,
vðrÞ ¼ V0½1��ðr� RÞ�. The wave function inside the
potential well is a superposition of two radial waves, finite
at the origin and with different spin orientations. In gra-
phene, Rashba spin coupling entangles spin and pseudo-
spin and the change of spin in a scattering event depends on
the evolution of the pseudospin. Unlike conventional semi-
conductors [9], the spins in different angular momentum
channels differ, complicating the definition of the amount
of spin relaxation in a scattering event. From the given

incoming wave �in with spin parallel to the momentum ~k
and incident angle �, there are two possible outgoing
waves �out

k�þðr;��Þ, �out
k��ðr; �0Þ, which satisfy conserva-

tion of energy and momentum. These can be written in a
similar way as Eq. (2), where �0 � ��þ�cotð�Þ=ðvFkÞ,
respectively. We then define

S ¼
P

nðrnr0n þ r0nr00nÞ �
P

nðr20n þ ðr00nÞ2ÞP
nðr20n þ ðr00nÞ2Þ

; (3)

where rnðr0nÞ and r0nðr00nÞ are the scattering amplitudes for

a given angular momentum channel n with (without) SO
coupling and for the two possible outgoing waves �outþ ,
�out� respectively. SO coupling changes the wave vector for
one of the reflected waves, k0 � k��=vF. The leading
reflection coefficient, rn¼0, in the absence of SO coupling
depends on the wave vector as r0ðkÞ � V0kR

2=vF [21], so
that rn¼0ðk0Þ � rn¼0ðkÞ � V0�R

2=ðvFÞ2 and S �
�=ðvFkÞ. S vanishes if the spin is conserved in the scat-
tering event. If the changes induced by a finite � are
small, this quantity should be proportional to the change
in spin orientation during the scattering process. The
change in spin orientation at each collision is �=ðvFkFÞ.
The total change of the spin after Ncoll collisions is of
order

ffiffiffiffiffiffiffiffiffiffi
Ncoll

p
�ðvFkFÞ�1. Dephasing occurs whenffiffiffiffiffiffiffiffiffiffi

Ncoll

p
�ðvFkFÞ�1 ¼ 2� after a time �so ¼ �elNcoll, where

�el is the elastic scattering time, and the Elliot-Yafet
spin-relaxation time is �EYso � ðvFkFÞ2=�2 � ðlel=vFÞ �
ðvFkFÞ2=�2 � �el. The spin-diffusion length is related to
the spin-relaxation time by �so ¼

ffiffiffiffiffiffiffiffiffiffi
D�so

p
, where D ¼

v2
F�=2 so �EY

so � lelðvFkFÞ=�.
The Dyakonov-Perel mechanism.— Between scattering

events, the Rashba SO coupling acts as an effective mag-
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netic field in the plane, ~Bkð�̂Þ ¼ �ð�̂� êzÞ=2, on the spins
[16,17]. The spin dynamics is a result of spins precessing in
a fluctuating in-plane magnetic field governed by the mo-
mentum. Elastic scattering randomizes the momentum and
the associated magnetic field. Averaging over many colli-
sions, the spin orientation becomes random after a time [9]

�DPso � vFl
�1
el =�

2; (4)

e.g., the spin-relaxation time is inversely proportional to
the elastic scattering time. The DP spin-diffusion length is

independent of the mean free path �DP
so ¼ vF=ð

ffiffiffi
2

p
�Þ ¼

lprec=ð2
ffiffiffi
2

p
�Þ.

Effective gauge field.—Topological lattice defects,
strains, and curvature change the hopping integrals be-
tween the lattice sites. These effects are captured by an
induced effective gauge fieldAð~rÞ which deflect electrons
and change the electronic states at low energies [1,22]. A
is related to the strain tensor uijð ~rÞ describing topological

lattice disorder,Ax � ½uð~rÞxx � uð~rÞyy�,Ay � uð~rÞxy and
give rise to a random out-of-plane magnetic field B? ¼
½ ~r�Að~rÞ�z [22]. We will demonstrate that this out-of-
plane orbital magnetic field together with the Rashba SO
coupling can induce an out-of-plane spin polarization.

Let us first present a semiclassical argument for why the
spin polarization changes from in plane to out of plane as
the gauge field increases. B? causes the electrons to move
in cyclotron orbits with a radius rc ¼ 2�=ðevB?Þ, where v
is the velocity and � is the energy. A qualitative change in
the electronic states occurs when the cyclotron orbit is
smaller than the spin precession length, e.g., when 2�rc ¼
lprec. Using v ¼ vF, the graphene dispersion � ¼ vFkF,

and introducing the magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
e=B?

p
, there is

a transition when the magnetic length is shorter than

lcB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lprec�F

q
=ð2 ffiffiffi

2
p

�Þ; (5)

where �F ¼ 2�=kF is the Fermi wavelength. In the low
field regime, lB 	 lcB, in-plane momentum is a good quan-
tum number and via the SO interactions spins are polarized
in plane. In contrast, in the strong field regime, lB 
 lcB,
out-of-plane angular momentum is a good quantum num-
ber, and the SO coupling changes the polarization of the
states to out of plane.

Wewill now carry out a quantummechanical calculation
which will give more details and confirm our arguments
above with the threshold value Eq. (5) for the gauge field.
Inserting the gauge fields in the Hamiltonian in Eq. (1),
results in a 4� 4 Hamiltonian for one valley K,

H ¼
0 0 vF�̂ 0
0 0 �i� vF�̂

vF�̂
y i� 0 0

0 vF�̂
y 0 0

0
BBB@

1
CCCA; (6)

where � ¼ Px � iPy, P ¼ �irþ eA and a similar

Hamiltonian can be written for K0, where the sign of the

gauge field is reversed. First, consider the solution of the
Dirac equation when � ¼ 0. The results are gauge invari-
ant so we choose the Landau gauge Ax ¼ 0, Ay ¼ B?x
and consider a homogenous magnetic field to illustrate the
main effect. The wave functions are

�n;";# ¼ �i	n�1ðx� x0Þ
	nðx� x0Þ

� �
eikyj"; #i; (7)

with eigenenergy �n ¼ �vF

ffiffiffiffiffiffiffiffiffi
2jnjp

=lB in terms of solutions
of a particle in a harmonic oscillator potential 	nðx� x0Þ.
The two components of�n;";# correspond to the amplitudes

in the two graphene sublattices and x0 ¼ kl2B is the Landau
level guiding center.
The Rashba SO coupling induces an interaction between

electrons with spin up in one sublattice and electrons with
spin down in the other sublattice. Therefore it is convenient
to express the Hamiltonian (6) in the basis 	n�1½1; 0�Tj"i,
	n½0; 1�Tj"i, 	n½1; 0�Tj#i, 	nþ1½0; 1�Tj#i, H ¼
~HvF

ffiffiffi
2

p
=lB:

~H ¼
0 i

ffiffiffiffiffiffijnjp
0 0

�i
ffiffiffiffiffiffijnjp

0 �i~� 0

0 i~� 0 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jnþ 1jp

0 0 �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijnþ 1jp

0

0
BBBB@

1
CCCCA;

(8)

where ~� ¼ �lB=ðvF

ffiffiffi
2

p Þ. The eigenenergies of ~H are:

~� 2
n ¼ �½1þ ~�2 þ 2nþ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ~�2Þ2 þ 4n~�2

q
�=2;

where, � ¼ þ (� ¼ �) denotes electron (hole) like ex-
citations and s ¼ þ (s ¼ �) denotes spin. Let us consider
the expectation value of the out-of-plane spin polarization
of these states, pz. For n ¼ 0 there are three physical states

of which one has polarization ð@=2Þð1� ~�2Þð1þ ~�2Þ and
two have polarizations �ð@=2Þ=ð1þ ~�2Þ. For all states
where n � 1 the polarizations are

pz ¼ s
@

2
½ð1þ ~�2Þ2 þ 4n~�2��1=2: (9)

The spin polarization differs between the lowest and high-
est Landau levels and the transition roughly occurs when

4
ffiffiffi
n

p ~� � 1. Transport is governed by states at the Fermi

energy �n � vF

ffiffiffiffiffiffiffiffiffi
2jnjp

=lB ! vFkF and the condition

4
ffiffiffi
n

p ~� � 1 can be rewritten in terms of a critical value
for the magnetic length, which exactly agrees with our
semiclassical estimate for lcB in Eq. (5). Equation (9)

demonstrates that when lB 
 lðcÞB the states are fully out-
of-plane polarized, but the out-of-plane polarization van-

ishes when the gauge field is weak lB 	 lðcÞB . The energy
splitting is of the order � for weak gauge fields and

reduced by a factor ½lðcÞB =lB�2 for stronger gauge fields.
This change in the polarization direction of the eigen-

states with increasing gauge fields has consequences for
the spin relaxation. When the gauge fields vanish, the
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effective magnetic field is in plane so that spins out of plane
relax twice as fast as spins in plane. In the regime around

lB ¼ lðcÞB , the in-plane and out-of-plane components of the
effective magnetic field are comparable and we expect the
spin-relaxation anisotropy to be reduced and eventually
exhibit the opposite behavior, spins in plane relax faster
than spins out of plane.

Experimental consequences.—We use typical parame-
ters for graphene, @vF ¼ 5:3� 10�10 eVm and the en-
hanced Rashba coupling for a ripple of radius R ¼ 100 nm
is �R¼100 nm ¼ 1:7� 10�5 eV [19]. The Fermi wave-

length depends on the electron doping n, �F ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2�=n

p
.

In Ref. [3] n � 3:6� 1016 m�2 so �F � 13 nm and lel ¼
36 nm, but considerably larger mean free paths have been
measured and should be expected in clean systems in the
future.

Comparing the DP and EY relaxation mechanisms,
�EYso � ðvFkFÞ2=�2

so�p and �DPso � ��1
p =�2

so, we find

�EYso =�
DP
so � �2pðvFkFÞ2 � ðkFlelÞ2. Typically ðkFlelÞ2 	 1,

e.g, in Ref. [3] ðkFlelÞ2 � 300, so the DP mechanism is
much more important that the EY mechanism.

The experimental trend that the spin-relaxation length is
proportional to the mean free path [3,18] is encouraging
since it suggests clean systems should have a very long
spin-relaxation length. However, this is at odds with our
results for intrinsic graphene where the spin-relaxation
length only weakly depends on the mean free path. The
good news is that the computed spin-relaxation length
is long, we find lprec ¼ 2�@vF=�R¼100 nm ¼ 190 �m

and hence the DP spin-relaxation length is �DP
sf ¼

lprec=ð2�
ffiffiffi
2

p Þ � 20 �m. On the other hand, in Ref. [3]

�sf � 1:3–2 �m. Our theory neither quantitively nor quali-
tatively explains the experiments in Ref. [3]. Adatoms such
as hydrogen that locally enhance the SO interaction could
be responsible for the discrepancy since the mobility of the
experimental samples is relatively low [23].

Our theory applies to cleaner, intrinsic graphene, possi-
bly with less adatoms, where we predict novel spin-
relaxation anisotropy effects. We expect it is possible to
obtain longer spin-relaxation lengths than in Refs. [3,18],
but that one eventually will enter the intrinsic regime
where the DP mechanism prevents a further enhance-
ment. Furthermore, in intrinsic graphene, gauge fields
due to ripples are important. From the parameters above,

we find a threshold magnetic length of lðcÞB � 200 nm.
Surface corrugations give rise to effective magnetic lengths
of the order lB � 100 nm [22] so already at these electron
densities gauge fields are important and reduce the spin
relaxation with respect to the DP mechanism. Lower elec-
tron densities, which are feasible, should enhance the
effects of the gauge fields. In ultra clean systems, lel >
lB, we expect �DPso ! vFl

�1
B =�2 and the spin-relaxation

time saturates. We encourage experiments in clean gra-
phene, which will further elucidate the interplay between
SO coupling, momentum relaxation, and gauge fields.
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