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The effect of surface exchange anisotropies is known to play an important role in magnetic critical and

multicritical behavior at surfaces. We give an exact analysis of this problem in d ¼ 2 for the OðnÞ model

using the Coulomb gas, conformal invariance, and integrability techniques. We obtain the full set of

critical exponents at the anisotropic special transition—where the symmetry on the boundary is broken

down to Oðn1Þ �Oðn� n1Þ—as a function of n1. We also obtain the full phase diagram and crossover

exponents. Crucial in this analysis is a new solution of the boundary Yang-Baxter equations for loop

models. The appearance of the generalization of Schramm-Loewner evolution SLE�;� is also discussed.
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The study of boundary critical phenomena is relevant to
a very large number of physics problems. These include, on
the condensed matter side, the critical behavior of magnets
and alloys with free surfaces [1], adsorption of fluids or
polymers on walls and interfaces [2], but also—through a
series of by now well-known mappings—the Kondo and
other effects in quantum impurity problems [3,4]. On the
high-energy physics side, apart from the old problem of
studying field theories on manifolds with boundaries, the
more recent developments inspired by string theory have
put boundary effects squarely in the limelight. This in-
cludes the physics of D-branes [5], and of course the cele-
brated anti–de Sitter/conformal field theory (AdS/CFT)
conjecture [6]. Boundary effects are also central to many
recent developments in the study of geometrical critical
phenomena and the Schramm-Loewner evolution (SLE)
approach [7].

Going back to the critical behavior of magnets, sur-
face effects can give rise to a bewildering array of physical
effects [8], especially when combined with finite size
effects [9]. The experimental activity [10–12] has been
steady.

In interpreting experimental results, a natural question
concerns the effects of surface anisotropy [13]. While it
was quickly understood that such effects are irrelevant near
the ordinary transition in the n-vector model [14], further
study [15] showed that they are relevant near special
transitions, and that they lead, in high enough dimension,
to the emergence of new ‘‘anisotropic special’’ transitions.
The corresponding family of new boundary critical points
was extensively studied in d ¼ 4� � (see [16] for recent
work), and in the 1=n expansion [17]. The presence of
anisotropy on the boundary is particularly interesting in
d ¼ 3 since, while only ordinary transitions are observable
for isotropic systems with continuous symmetry, the pres-
ence of an easy axis on the boundary allows for an (aniso-
tropic) special transition, which has been studied to second
order in � [15].

We present in this Letter a complete solution of the
problem in d ¼ 2, in the context of a geometrical reformu-
lation of the n-vector model as a loop model [18]. Even
though the ‘‘surface’’ is here one dimensional—and so
strictly speaking cannot order for integer n—this reformu-
lation in fact exhibits all the physics of the transitions in
higher dimension. In particular, we fully recover the phase
diagram conjectured in [15]. Moreover, the loop formula-
tion permits us to treat n as a real variable, and the limits
n ! 0 and n ! 1 give access to physical results for poly-
mers and the Ising model.
The case d ¼ 2 is interesting for other reasons as well.

One concerns the classification of all possible conformal
boundary conditions for ‘‘nonminimal’’ conformal field
theories (CFTs)—such as the loop models [19]—with
potential applications to string theory or 2D quantum
gravity [20]. Another has to do with the general program
of understanding all critical exponents in geometrical mod-
els, as well as their relations with (variants of) the SLE
formalism [21].
Loop model.—The classicalOðnÞmodel in d dimensions

is defined, initially, by placing on each lattice site i a vector

spin ~Si with components S�i for � ¼ 1; . . . ; n. Along each
link (ij), neighboring spins interact through the Boltzmann

weight expðx ~Si � ~SjÞ. At high temperatures (low x) this can

be replaced by 1þ x ~Si � ~Sj. This replacement does not

modify the long-distance behavior, up to and including
the critical point xc. The partition function then reads

Z ¼ Tr
Y
hiji

ð1þ x ~Si � ~SjÞ; (1)

where hiji denotes the set of nearest neighbors. The trace
over spin configurations can be normalized so that
TrS�i S

�
j ¼ �ij���.

Expand now the product in (1), and draw a monomer on
link (ij) when the term xS

�
i S

�
j is taken. The trace of terms

containing an odd power of any S�i vanishes by the symme-
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try ~Si ! � ~Si. Specializing to a trivalent lattice, nonvanish-
ing terms can then only contain S

�
i to the power 0 or 2. The

monomers drawn hence form configurations C of nonin-
tersecting loops. Summing over components then yields

Z ¼ X
C

xXnN; (2)

where X (respectively, N) is the number of monomers
(respectively, loops) in C. In this formulation, n can be
considered a continuous variable. When x % xc, the aver-
age length of a loop passing through the origin diverges.

Surface critical behavior.—When a boundary is present
(see Fig. 1), boundary sites have fewer neighbors than bulk
sites, so we can expect boundary spins to be disordered at
and slightly above xc, where bulk spins start ordering. In
the loop picture, this means that boundary monomers are
less probable than bulk monomers, and in the continuum
limit loops will avoid the boundary. This is the ordinary
surface transition Ord.

Consider now the model Z ¼ P
Cx

XwWnN with an extra
weight w each time a loop passes through a boundary site
(see Fig. 1). When w> 1, loops are attracted to the bound-
ary. At a critical value wc, this attraction precisely com-
pensates the lower number of neighbors, so that bulk and
boundary spins order simultaneously. This is the special
surface transition Sp. All other values of w flow towards 1
or 1, the latter being the extraordinary transition Ex in
which a single loop occupies the whole boundary. The set
of boundary monomers has a nontrivial fractal dimension,
0< df < d� 1, only at Sp.

For d ¼ 2 the above references to spin ordering do not
make sense due to the Mermin-Wagner theorem. The
transitions Ord and Sp nevertheless exist in the loopmodel.

On the honeycomb lattice, for �2< n � 2, xc ¼
ð2þ ffiffiffiffiffiffiffiffiffiffiffiffi

2� n
p Þ�1=2 [22] and wc ¼ 1þ 2=

ffiffiffiffiffiffiffiffiffiffiffiffi
2� n

p
[23].

Surface anisotropy.—Motivated by experiments [13]
and theoretical developments for d > 2 [14–17], we now
allow for anisotropy in the boundary interaction, breaking
the symmetry down to Oðn1Þ �Oðn2Þ. The effect in the
loop model formulation is immediate. We call type 1

(drawn black in Fig. 1) a loop for which � ¼ 1; . . . ; n1,
and type 2 (white) a loop with � ¼ n1 þ 1; . . . ; n. For
boundary loops, the sum over � is done separately for
each loop type, whereas for bulk loops the summation is
complete as before. The fugacity of boundary loops of
type 1 (respectively, 2) is thus n1 (respectively, n2 ¼ n�
n1). This leads to

Z ¼ X
C

xXwW1

1 wW2

2 nNnN1

1 nN2

2 ; (3)

where nowN is the number of bulk loops only, and we have
introduced type-dependent weights w1 and w2 for each
time a loop passes through a boundary site. [The total
weight in Fig. 1 is the product of that of the black (respec-
tively, white) boundary loop, x24w2

1n1 (respectively,
x10w2n2), and that of the bulk loops (gray), x6n� x10n.]
We henceforth consider n1 a continuous variable, with 0 �
n1 � n.
Integrability.—As in previous work [22,23], our exact

results for the honeycomb loop model are derived from the
integrability of a related model on the square lattice. It is
defined by the vertex weights

1 2 3 4 5 6

where vertices related by horizontal and vertical reflection
have been drawn only once. This model is integrable in the
bulk—i.e., the weights satisfy the Yang-Baxter equations
with spectral parameter u—when [22]

!1 ¼ sin2c sin3c þ sinu sinð3c �uÞ
!2 ¼ sin2c sinð3c �uÞ !3 ¼ sin2c sinu

!4 ¼ sinu sinð3c �uÞ !5 ¼ sinð2c �uÞ sinð3c �uÞ
!6 ¼� sinu sinðc �uÞ; (4)

and c parametrizes n ¼ �2 cos4c . Boundary interactions
are introduced as follows:

The following integrable weights—i.e., satisfying the
boundary Yang-Baxter equation—describe the well-known
isotropic transitions [23]

Ord: �0 ¼ sinð32c þ uÞ; �1 ¼ �2 ¼ sinð32c � uÞ
Sp: �0 ¼ cosð32c þ uÞ; �1 ¼ �2 ¼ cosð32c � uÞ:

We have generalized this result by finding a new aniso-
tropic solution AS1, with n1 ¼ � sin½4ð��
1Þc �= sinð4�c Þ parametrized by �:

�0 ¼ sin½ð2�þ 1
2Þc � u� sin½ð2�� 1

2Þc þ u�
�1 ¼ sin½ð2�þ 1

2Þc þ u� sin½ð2�� 1
2Þc þ u�

�2 ¼ sin½ð2�þ 1
2Þc � u� sin½ð2�� 1

2Þc � u�:
(5)

B
ou
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y

FIG. 1. OðnÞ loop model with a boundary. Boundary loops
pass through one or more boundary sites, and can be of type 1
(drawn black) or 2 (white). Bulk loops are drawn gray.
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Another solution AS2 arises from the duality transforma-
tion that exchanges the two loop types, i.e., n1 ! n� n1.

When u ¼ c we have!6 ¼ 0 in (4), and so each vertex
can be pulled apart horizontally so as to form a pair of
honeycomb vertices ( ). The weights in (3) read

w1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1;2=ðx�0Þ

q
, evaluated [23,24] in u=2:

w1;2 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2� n

p
2

� n1 � n
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n1ðn� n1Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
2� n

p : (6)

Continuum limit.—The long-distance behavior at the
anisotropic special point AS1 could be inferred by setting
up the Bethe ansatz equations corresponding to (5). An
alternative and easier route is to use the Coulomb gas
approach to CFT [18].

Consider first the bulk theory. Orient each loop indepen-

dently, and attribute a weight ei	
=ð2�Þ when a loop turns an
angle 
. Summing over orientations, this gives n ¼
2 cos	. A height field h is defined by viewing oriented
loops as its level lines, across which h ! h� �. This is
well known [18] to renormalize towards a Gaussian free
field with action

S ¼ g

4�

Z
ð@hÞ2d2x: (7)

The coupling constant g is fixed by requiring that the
operator cosð2hÞ conjugate to the discretization of h (and
hence to the weight n) be strictly marginal. This gives g ¼
1þ 	=�. The central charge c and the Kac critical expo-
nents ha;b of primary operators�a;b are parametrized by a,
b, and g:

c¼1�6
ðg�1Þ2

g
; ha;b¼ðga�bÞ2�ðg�1Þ2

4g
: (8)

It is convenient to define the boundary theory on an L�
T annulus with period T. Its left rim roles as the boundary
(cf. Fig. 1). Type 1 loops have weight n1 ¼ sin½ðrþ
1Þ	�= sinðr	Þ, with r 2 ð0; �=	Þ a new parameter. The
operators that constrain a boundary monomer to be of
type 1 or 2 are orthogonal projectors. We can write, e.g.,
the type 1 projector in the basis of oriented loops:

where the top (respectively, bottom) line pertains to the left
(respectively, right) rim of the annulus, and kL ¼ 2i sinr	,
kR ¼ 2i sin	. Loops touching only the right rim are bulk
loops and have a weight n. Requiring weight n1 for loops
touching both rims fixes ’L � ’R ¼ r	. Note that our
interaction does not conserve the arrow current.

We assume that the diagonal part induces a flow towards
fixed boundary conditions for the dual field. We thus end
up with a free field with Neumann boundary conditions on
both rims, and additional weights e�ir	 for each of the p

pairs of oriented half-loops going from one rim to the other.
This amounts to a height defect �h ¼ 2�p when going
around the periodic direction, y ! yþ T, of the annulus.

This can be gauged away by writing hðx; yÞ ¼ ~hðx; yÞ þ
2�py=T, where now ~h is periodic. The second term gives
rise toX

p2Z

eipr	e�ðg=4�Þp2ð2�=TÞ2LT / X
n2Z

e�ð�T=4gLÞððr	=�Þ�2nÞ2 ;

where we used (7) and a Poisson resummation. Integration

over the first term gives q�1=24=PðqÞ, with modular pa-

rameter q ¼ e��T=L and PðqÞ ¼ Q
k�1ð1� qkÞ. Using

now (8) gives the exact continuum limit partition function
in the sector with zero noncontractible loops:

Z0ðqÞ ¼ q�c=24

PðqÞ
X
n2Z

qhr;r�2n ; (9)

where the easy limit T � L has been used to fix the
normalization. The complete spectrum of critical expo-
nents can be read off from (9).
To be precise, (9) is valid at the transition AS2. This can

be seen from the limit n1 ! n, under which the leading
exponent hr;r in (9) vanishes. This fits with AS2 ! Ord,
while AS1 ! Sp. However, results for AS1 can easily be
obtained by applying the duality transformation to (9). We
conclude that the boundary condition changing (BCC)
operators are �r;rþ1 for (AS1=Ord) and �r;r for

(AS2=Ord).
Fractal dimensions.—A noncontractible loop on the an-

nulus is generated by the operator �2;1 [7]. Conformal

fusing with the BCC operator gives �r;rþ1 	�2;1 ¼
�rþ1;rþ1 
�r�1;rþ1 for AS1. To interpret this, note that

the first term on the right-hand side is dominant, and since
w1 >w2 in (6) this must correspond to the insertion of a
type 1 (black) noncontractible loop. The second term thus
produces a type 2 (white) loop.

The fractal dimension dð1Þf of the set of type 1 boundary

monomers is conjugate to the operator inserting two black
loop strands at the boundary. This is obtained by fusing
�rþ1;rþ1 with itself, giving the principal contribution

�2rþ1;2rþ1. Therefore

dð1Þf ¼ 1� h2rþ1;2rþ1 ¼ 1� rðrþ 1Þ ðg� 1Þ2
g

(10)

at AS1. This is nontrivial (0< df < 1), just as the result

[23] df ¼ 1� h3;3 ¼ 1� 2ðg� 1Þ2=g at the special tran-

sition. We find similarly that dð2Þf < 0 at AS1.

These results imply the physical interpretation of AS1:
type 1 loops are critically attracted towards the boundary,
and type 2 loops retract from it. In other words, type 1
(respectively, type 2) loops stand at an anisotropic special
(respectively, ordinary) transition.
Phase diagram.—We are now ready to propose the

phase diagram of the model (3), for x ¼ xc and in the
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regime 0< n1 < n. See Fig. 2. The fixed points (depicted
as solid circles) are conformally invariant boundary con-
ditions, and the double arrows represent flows under the
boundary renormalization group (RG).

Surface anisotropy must be relevant (respectively, irrele-
vant) at the special (respectively, ordinary) isotropic tran-
sition, since the loops see (respectively, do not see) the
boundary in that case. Only in the former case can we
expect n1 to change the critical behavior of boundary
loops. This agrees physically with the conclusions of
[14,15] for d > 2.

More precise evidence for these flows can be found by
evaluating the boundary entropies Sb ¼ � loggb for the
various boundary conditions. By the so-called g theorem
[25], Sb increases under the boundary RG flows: the flow is
from a less stable to a more stable boundary condition. gAS1
and gAS2 are related by n1 ! n� n1. We find [24]

gAS1 ¼
�
2

g

�
1=4 sin½ðrþ 1Þ	=g�

sinr	

�
sin	

sinð	=gÞ
�
1=2

(11)

to be compared with gOrd ¼ ð2=gÞ1=4½sinð	=gÞ= sin	�1=2
and gSp ¼ ð2=gÞ1=4 sinð2	=gÞ=½sin	 sinð	=gÞ�1=2. We

have thus SOrd > SAS1;2 > SSp, as is consistent with the

flows of Fig. 2. Note that it is possible to flow to AS1 by
tuning only w1 and not w2, in agreement with the inter-
pretation that only type 1 loops stand at AS1.

Near the point Sp we have w1 � w2 � ðwc � wÞ1=�.
Identifying the operators perturbing in the isotropic and
anisotropic directions, and using standard scaling argu-
ments, gives the crossover exponent � ¼ ð1� h1;3Þ=ð1�
h3;3Þ. The fact that �< 1 for 0< n � 2 implies the cusp-

like shape of the phase diagram near Sp. This feature is
also present [15] in d > 2.

Physical realization of SLE�;�.—Schramm-Loewner

evolutions have a natural generalization with a distin-
guished boundary point, leading to the two-parameter fam-

ily of processes SLE�;� [7,21]. Its physical relevance has,

however, remained unclear so far.
Our geometric formulation provides a lattice object

whose scaling limit must be described by such a process.
Indeed, according to the SLE/CFT correspondence [7],
type 1 loops (black) at AS1 correspond to � ¼ 4=g and
� ¼ �ðhrþ1;rþ1 � hr;rþ1 � h2;1Þ ¼ rð4� �Þ=2� 2. The

fractal dimension of the intersection of the SLE�;� trace

with the real axis is (10): dð1Þf ¼ ð1þ �=4Þ�
ð2� 8=�� 4�=�Þ.
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