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We report the observation of quasi-Bloch oscillations, a recently proposed, new type of dynamic

localization in the spatial evolution of light in a curved coupled optical waveguide array. By spatially

resolving the optical intensity at various propagation distances, we show the delocalization and final

relocalization of the beam in the waveguide array. Through comparisons with other structures, we show

that this dynamic localization is robust beyond the nearest-neighbor tight-binding approximation and

exhibits a wavelength dependence different from conventional dynamic localization.
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The dynamics of an electron in a one-dimensional (1D)
spatially periodic potential in the presence of a spatially
uniform electric field has generated great interest over the
past 70 years. When the electric field is static (dc), this
yields the well-known phenomena of Bloch oscillations
(BOs) wherein an initially localized electron wave packet
delocalizes over several lattices and then relocalizes back
to its initial position at times given by the Bloch oscillation
period, �B [1,2]. More recently, it was shown that a similar
phenomenon, dynamic localization (DL), can occur even
for ac fields [3].

Two distinct types of DL exist: approximate dynamic
localization (ADL) and exact dynamic localization (EDL).
ADL occurs for a particular amplitude of sinusoidal elec-
tric fields if the electron band dispersion can be accurately
described in the nearest-neighbor tight-binding (NNTB)
approximation [3]. EDL occurs for arbitrary dispersion
but only for ac fields that are discontinuous at every sign
change [4]. In both ADL and EDL, the electron relocalizes
at times given by the period, �, of the ac field.

Quasi-Bloch oscillations (QBOs), a new type of DL, can
occur when both ac and dc electric fields are present. QBOs
differ from ADL and EDL in that they occur regardless of
the shape and amplitude of the ac component of the field.
Relocalization occurs with a period of T ¼ N� (N > 1) if
the BO period associated with the dc component of the
field is �B ¼ N�. Although QBOs do not occur for an
arbitrary band dispersion, they are less restrictive than
ADL because they can occur if the band dispersion is
accurately described in the (N � 1)th-order NNTB ap-
proximation [5].

Because of domain formation, electron-electron interac-
tions, and electron-phonon interactions, BOs and DL are

difficult to observe in solid-state systems. BOs have been
observed in semiconductor superlattices [6], which make
possible the completion of several BOs before decoher-
ence dominates. DL also requires large-amplitude, THz-
frequency ac fields with periods shorter than the electron
decoherence times. To avoid these difficulties, researchers
have investigated a number of alternative systems to ob-
serve BO and DL, such as periodic arrays of optically
trapped atoms [7–9] and waveguide structures [10–19].
Nonetheless, until now, the observation of QBOs has not
yet been reported in any system. In this Letter we present
the first experimental demonstration of QBOs in curved
coupled optical waveguides (CCOWs) and explicitly show
that they are robust beyond the NNTB approximation. By
resolving the spectral response of the QBOs and comparing
it to other DL structures, we show that QBOs can have a
larger relocalization wavelength bandwidth than other DL
schemes.
To demonstrate QBOs, we measured the propagation of

a continuous wave optical beam in a CCOW array and
compared the results with EDL and ADL. Figure 1(a)
shows a schematic of the CCOW. The transverse period
of the waveguides is d, u (v) is the coordinate perpendicu-
lar (parallel) to the direction of beam propagation, nðuÞ is
the refractive index profile, � is the free space wavelength,
and c is the vacuum speed of light. The curvature of the
central waveguide at position v is RðvÞ. If the width of the
waveguide array is much less than minj2RðvÞj, the spatial
evolution of the envelope of the out-of-plane component of
the magnetic or electric field along v maps onto the tem-
poral evolution of the wave function of an electron in a 1D
periodic potential VðuÞwith period d under the influence of
an external electric field EðtÞ. The mapping from Maxwell
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equations to the continuous Schrodinger equation is [20]

t ! v

c
; m� ! �nh

c�
; VðuÞ ! �hc

�n2ðuÞ
2 �n�

;

eEðtÞ ! hc �n

�RðvÞ :
(1)

In the electron system, t is time and �e and m� are the
charge and effective mass of the electron, respectively. In
the CCOW system, �n is the effective index of a single,
straight waveguide and �n2ðuÞ � n2ðuÞ � �n2.

In a superlattice, the electric field periodically relocal-
izes the electron wave function in time, while in the optical
domain, the waveguide curvature periodically relocalizes
the optical beam in space. The radius of curvature in the
optical domain plays the role of the electric field in the
electronic system. If light is launched into the single input
waveguide in the CCOW [Fig. 1(a)], then DL manifests as
the periodic relocalization of the light back into a single
waveguide along the direction of propagation. DL in the
optical domain is controlled via the choice of the radius of
curvature profile, RðvÞ, and the optical wavelength.

BOs and DL can be explained in the context of the
CCOWs. We begin by examining the effects of curvature
on the optical modes in the CCOW array. The optical

modes of an infinite array of straight, coupled waveguides
are Bloch waves that can be labeled by the Bloch wave
vector, k, where ��=d < k � �=d. In analogy to the
energy bands of electron states in solids, the infinite wave-
guide array supports modes with a band of propagation
constants �ðkÞ [21]. The propagation constant of a Bloch

mode, HkðuÞei�ðkÞv, is

�ðkÞ ¼ X1
p¼�1

~�pe
ikpd; (2)

where the ~�p are the Fourier expansion coefficients of the

band. In general, the description of �ðkÞ requires knowl-
edge of all ~�p’s. However, if the propagation constants are

well described using only the ~�p’s up to jpj ¼ N, the

bands are said to be in the Nth-order NNTB approxima-
tion. The usual NNTB approximation is N ¼ 1. The opti-
cal field in the straight waveguide array can be expressed as
a linear superposition of the Bloch modes. Because each
mode has a different �ðkÞ, light initially localized in a
single waveguide of the array spreads over many wave-
guides along v [21].
The addition of a constant curvature to the array results

in BOs, which can be understood through the optical
Wannier-Stark ladder (WSL) modes. The waveguide cur-
vature can be modeled by adding �nu=Rdc to the index of
refraction profile. The individual waveguides become de-
tuned so they no longer form delocalized Bloch modes. In a
one-band model, the new modes are the WSL modes with
propagation constants

�ðmÞ ¼ �ð0Þ þ 2�m

�BO

; (3)

where in the NNTB approximation, �ð0Þ is the single
waveguide propagation constant, �BO ¼ �Rdc= �nd is the
BO period, m is an integer, and the mth mode is spatially
centered at the mth waveguide [20]. An initially localized
field can be expressed as a superposition of the WSL
modes. After propagating a distance equal to a multiple
of �BO, the phases of the WSL modes are equal to mul-
tiples of 2�, resulting in the relocalization of the light.
Certain ac curvature profiles, which are periodic in v

with period�ac, can result in DL. An example that exhibits
EDL is a ‘‘square-wave’’ profile, where RðvÞ is piecewise
constant, such that RðvÞ ¼ �ac �nd=2� � R0E for half of
the period and RðvÞ ¼ �R0E for the other half [22]. Light
undergoes one BO over RðvÞ ¼ R0E and a second BO over
RðvÞ ¼ �R0E. For EDL, RðvÞmust remain finite [4]. How-
ever, if the structure can be described in the N ¼ 1 NNTB
approximation, then DL can be approximated as ADL and
can occur even when RðvÞ diverges. An example is the
curvature of the form RADLðvÞ¼R0A sinð2�v=�acÞ�1,
where R0A satisfies J0ðd �n�ac=�R0AÞ ¼ 0 and J0ðxÞ is the
zeroth-order Bessel function of the first kind [10].

0

10

20

0.5

1.0

0

-R

+R

v

u

d
Λac

Input waveguide Output slab

x

y

2π /ΛAC

2π/ΛBO

κ(m)

(b)

m= 0

m= 1

m= 2

m= N

m= -1

m= N+1

Kp=1=

A
C

 G
ra

tin
g 

V
ec

to
r

57.105.152.152.0 0.75 00.200.10 0.50

y (cm)

0
8

16

-8

0
8

16

-8

Po
si

tio
n

x/
d

Po
si

tio
n

x/
d

Po
si

tio
n

x/
d

(c) ADL

(d) EDL

(e) QBO

(a)

FIG. 1 (color online). (a) Schematic of a CCOW. The wave-
guides are terminated at the slab. (b) Illustration of QBO as the
coupling between WSL modes with a grating vector due to the
periodic ac curvature along v. The ac grating vector has net zero
coupling strength. Scalar beam propagation simulation of light
propagation in (c) ADL, (d) EDL, and (e) QBO structures. The
CCOWs are not well described by the NNTB approximation.
Some neighboring waveguides are marked white for visibility.
The plots are in the x-y coordinate system.
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If the waveguide curvature consists of a dc component
plus a periodic ac component, then QBO can occur.
QBOs can be understood by considering the effect of the
ac curvature on the WSL modes formed by the dc cur-
vature. As illustrated in Fig. 1(b), the ac curvature couples
the WSL modes and changes the amplitude and phase of
the field in each waveguide. For QBOs to occur, the
ac period should satisfy �BO ¼ N�ac, where N is an
integer. Since the ac curvature is periodic in v, it only
has Fourier components at wave vectors (along v) of
Kp ¼ 2�p=�ac ¼ 2�pN=�BO, where p is an integer.

Combining this result with Eq. (3), the grating from the
ac curvature can only couple WSL modes with a difference
in their indices, �m, that are multiples of N [Fig. 1(b)].
Moreover, the coupling strength due to the ac curvature,
nacðuÞ ¼ �nu=Rac, between WSL modes with propagation
constants that differ by �� ¼ 2��m=�BO is proportional

to ~��m [23], but in the (N � 1)th-order NNTB approxima-

tion, ~�p ¼ 0 for jpj> ðN � 1Þ in Eq. (2). Therefore, there
is no net coupling between the WSL modes after propa-
gating through �BO, though each WSL mode accumulates
a phase-shift determined by Eq. (3). At v ¼ �BO, the
WSL-mode phase differences are multiples of 2�, so a
beam localized at v ¼ 0 exactly relocalizes at v ¼ �BO.

To demonstrate QBOs and show their robustness beyond
the NNTB approximation, we fabricated three CCOWs
that differ only in their curvature profiles: one to exhibit
QBOs and one each to examine ADL and EDL. Each
CCOW consisted of an array of 50 waveguides of length
� ¼ 2:0 cm and was designed to operate at a wavelength
of � ¼ 1546 nm. The single-mode waveguides were litho-
graphically defined on an AlGaAs wafer to have an effec-
tive index of �n ¼ 3:261 [11,13]. The waveguide spacing of
d ¼ 6:7 �m yields a photonic band gap of 77:2 cm�1

between the band of interest and the next band, resulting
in minimal coupling to other bands. The first band has

Fourier expansion coefficients ~�1 ¼ �12:3 cm�1, ~�2 ¼
1:82 cm�1, ~�3 ¼ �0:45 cm�1, and ~�4 ¼ 0:15 cm�1,
which is well-described in the 3rd-order NNTB
approximation.

In the three systems, �ac ¼ 0:5 cm. The ADL structure
had a curvature profile of RADLðvÞ ¼ R0A sinð2�v=�acÞ�1

with R0A ¼ 29:4 mm, which would yield ADL only if the

structure could be described in the NNTB. The EDL
structure had a square-wave curvature profile with an
amplitude of R0E ¼ 35:33 mm, so that R0E ¼ �ac �nd=2�.
The QBO structure had a curvature profile 1=RQBO ¼
1=Rdc þ 1=Rac, where

Rac ¼
�
R0ac for ðqþ 1

4Þ< v=�ac < ðqþ 3
4Þ

�R0ac for ðqþ 3
4Þ< v=�ac < ðqþ 5

4Þ;

Rdc ¼ 281:9 mm, Rac ¼ 58:7 mm, q is an integer, and 0<
v< 4�ac. Rdc was chosen such that �BO ¼ 4�ac ¼
2:0 cm. This ac component was chosen to not result in
DL in the absence of Rdc. The radii of curvature of the three
structures were much larger than the total array width of
0.335 mm, ensuring the validity of Eq. (1).
We calculated the optical intensity profiles in the three

non-NNTB CCOWs using a 2D scalar beam propaga-
tion method [Figs. 1(c)–1(e)]. In the EDL structure, light
completely relocalizes to the center waveguide after
each ac period, but in the ADL structure, it only par-
tially relocalizes at each ac period and is not well localized
at the end of the structure. In the QBO structure, light
relocalizes only after four ac periods at v ¼ 4�ac ¼ �BO.
To characterize the samples, TM polarized light from a

tunable laser was coupled into an input waveguide to array
via a tapered optical fiber. To observe the transverse profile
of the optical power, we focused our imaging system
through the slab waveguide [Fig. 1(a)] to the CCOW
termination and imaged with an InGaAs camera. The de-
tails of the measurement technique are described in [11].
The solid lines in Figs. 2(a)–2(l) show measured power

profiles at v ¼ �ac=2, �ac, 2�ac, and 4�ac. Consistent
with numerical simulations using the beam propagation
method (dashed lines), the light in the EDL structure re-
localized after each oscillation period, while the light in the
ADL structure only partially relocalized. To our knowl-
edge, this is the first experimental verification of the failure
of ADL in non-NNTB structures. The light in the QBO
structure relocalizes only after 4 ac periods, demonstrating
that QBOs occur even for non-NNTB structures.
According to Eq. (1), DL depends on the wavelength.

Figures. 3(a)–3(c) show the spatially resolved optical spec-
trum at v ¼ 4�ac for the structures. For the EDL and QBO
structures, localization is maximum at the design wave-

FIG. 2 (color online). Calculated
(dashed lines) and measured (solid lines)
optical power as a function of the trans-
verse coordinate for EDL (leftmost col-
umn), ADL (center column), and QBO
(rightmost column), respectively, at v ¼
0:5�ac, 1�ac, 2�ac, and 4�ac.
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length of 1546 nm. For the ADL structure, complete re-
localization does not occur at any wavelength.

The full width at three-quarter maximum (FWTM) of
the EDL structure was computed using scalar beam propa-
gation to be 45 nm, and the ratio between the FWTM of the
QBO and EDL structures was 1.7. The measured ratio and
width were 1.6 and 55 nm, respectively. We chose the
three-quarter reference instead of the traditional half ref-
erence, because the transmittance of the central waveguide
does not drop below half its maximum in the experimental
wavelength range.The discrepancy between the measured
and numerical results can be due to the wavelength depen-
dence of 2D refractive indices which was neglected in our
numerical model.

The difference between the EDL and QBO transmission
spectra can be more easily understood in the NNTB limit,
where approximate analytical expressions can be obtained.
In the NNTB approximation, the transmittance of the

central waveguide is T ’ jJ0½2 ~�1jSð4�ac; �Þj�j2, where

Sðv; �Þ � R
v
0 e

i�ðzÞdz, and �ðzÞ � 2� �nd
�

R
z
0 R

�1ðz0Þdz0
[20]. If � � ð�� �cÞ=�c � 1, for a square-wave EDL
structure, jSEDLð4�ac; �Þj ’ 4�acj�j, while for an N ¼ 4

QBO structure, jSQBOð4�ac; �Þj ’
ffiffiffi
2

p
�j�jjSQBOð�ac; �Þj

[24]. Thus, for small �, the EDL transmission is indepen-
dent of the square-wave radius of curvature (as long as an
integer number of BOs fit in each half period for � ¼ �c),
while the strong dependence of jSð�ac; �Þj on the QBO ac
field makes it possible to modify the QBO bandwidth by
changing the amplitude and/or shape of the ac curvature.
For example, neglecting material dispersion, the FWTM is
an order of magnitude larger than the EDL bandwidth for a
QBO structure with Rac ¼ 30 mm.

Although we have discussed only TM modes, similar
results were obtained for the TE modes. The propagation

constants of the TE and TM modes differ by only 0.01%,
which changes the localization wavelength by only
0.15 nm.
A reason for the good agreement between our experi-

mental results and predictions is the low bend loss of the
waveguides. Bend losses, which are necessarily present in
curved waveguides, correspond to interband coupling. For
our structures, the maximum expected bend losses are only
0:04 dB=cm, which leads to a power loss of less than 2%.
The low power coupling to other propagation bands en-
sures that our single band model is valid.
In summary, we have demonstrated a new type of dy-

namic localization called quasi-Bloch oscillations. The
observation and comparison of QBO with DL was made
possible using the CCOW, in which we can precisely
control the nearest-neighbor and interband coupling as
well as the magnitude and form of the curvature. In elec-
tronic systems, QBOs are of interest because they can
occur for ac fields with small amplitudes, thereby elimi-
nating the requirement of large-amplitude THz fields to
observe dynamic localization.
We thank Bhavin Bijlani for help in device fabrication.
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