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It has long been known that a maximally spinning black hole cannot be overspun by tossing in a test

body. Here we show that if instead the black hole starts out with below maximal spin, then indeed

overspinning can be achieved. We find that requirements on the size and internal structure of the test body

can be met if the body carries in orbital but not spin angular momentum. Our analysis neglects radiative

and self-force effects, which may prevent the overspinning.
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Gravitational collapse in general relativity inevitably
leads to spacetime singularities [1,2] where the theory
presumably breaks down. According to the ‘‘cosmic cen-
sorship’’ conjecture [3], ‘‘naked singularities’’—i.e., sin-
gularities visible from afar—cannot be formed via any
process that involves physically reasonable matter.
Although this hypothesis remains unproven, significant
evidence suggests that it may indeed be true, in the sense
that whenever singularities arise from generic, nonsingular
initial data, they may be always hidden behind a black hole
event horizon (and may even be invisible to any observer)
[4,5]. One way of testing cosmic censorship is thus to ask
whether it may be possible to destroy a black hole horizon.

The general stationary, vacuum black hole solution in
general relativity is a Kerr black hole, which is character-
ized by its mass M and angular momentum J. For angular
momentum greater than the ‘‘extremal’’ limit GM2=c, the
Kerr metric has no horizon and has a naked singularity. The
question we are posing is whether an object with either
orbital or spin angular momentum—hereafter called the
‘‘body’’—can be dropped into a Kerr black hole so as to
push the resulting composite object over the extremal limit.
If so, that object could not settle down to a stationary black
hole. Presumably, it would form a naked singularity, in
violation of cosmic censorship.

This question was considered and answered in the nega-
tive long ago by Wald [6] under the assumptions that the
black hole is initially extremal and the body can be treated
as a test particle. Here we relax the first assumption,
considering an initial black hole that is nearly but not quite
extremal and examining whether one can ‘‘jump over’’ the
extremal limit in the test body approximation. Our question
is motivated by Hubeny’s analysis [7], which showed in an
analogous setting that a charged test particle can be added
to a charged black hole in such a way that the resulting
object has too much charge to be a black hole, and by the
analysis of Hod [8], which showed that a point test particle
can be dropped from the horizon into a spinning black hole
in such a way that the resulting object has too much angular
momentum to be a black hole.

We extend Hod’s result, finding a broader class of tra-
jectories by which overspinning may be accomplished, and
we also consider physical structure and size limitations of
the particle. It turns out that the latter do not change the
conclusion in the orbital case, but they preclude overspin-
ning in the spin case. Radiation and/or self-force effects,
which lie outside the test body approximation, might
nevertheless prevent the overspinning. We note that the
considerations of the present Letter are strictly classical, in
contrast to a number of recent studies of quantummechani-
cal tunneling processes that might be able to overspin a
black hole (see [9] and references therein). Hereafter we
adopt units with G ¼ c ¼ 1.
In order to be able to treat the body as a test body, we

shall assume that its energy �E and angular momentum �J,
defined with respect to the Killing vectors of the black
hole, are small compared to those of the black hole:

�E � M; �J � J: (1)

Note that the black hole must start out very close to
extremal if the small perturbation caused by the body is
to have any chance of pushing it over the extremal limit.
We assume that the angular momentum of the body is

aligned with the spin of the black hole, in order to maxi-
mize the angular momentum added. The question, then, is
whether �E and �J can be chosen such that the body falls
into the black hole, with negligible corrections to the test
body approximation, and such that

J þ �J > ðMþ �EÞ2: (2)

This sets the lower bound on the required angular momen-
tum carried by the body, for a given �E:

�J > �Jmin ¼ ðM2 � JÞ þ 2M�Eþ �E2: (3)

Since we are assuming �E � M, it might seem that the
�E2 term may as well just be neglected at this stage, but in
fact that term imposes an upper bound on �E and �J.
Equation (3) yields

�J=�E2 > 2M=�E � 1: (4)
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If �E were equal to the rest mass of the body, and if �J
comes from spin, this would imply that the body has
angular momentum far over the extremal ratio. In itself,
this is not a problem, since there is no a priori upper limit
to this ratio if one is not restricted to black holes. Note also
that �E can be much less than the rest mass, if the body is
deeply bound.

An upper bound on the angular momentum of the body
comes from the requirement that it does indeed cross the
horizon to end up in the black hole. Wald [6] derived such a
bound by analyzing the trajectories using the geodesic or
Papapetrou equations for the case of orbital angular mo-
mentum and spin, respectively. We will use another path to
the same results which does not actually require the geo-
desic or Papapetrou equations.

If the body falls across the horizon, then the flux of
energy and angular momentum into the black hole are
related to the stress energy tensor of the body via

�E��H�J ¼
Z

Tab�
ad�b: (5)

Here�H ¼ a=2Mrþ is the angular velocity of the horizon,
where a ¼ J=M is the specific angular momentum and

rþ ¼ Mþ ðM2 � a2Þ1=2 is the horizon radius in Boyer-
Lindquist coordinates. The vector �a ¼ @at þ�H@

a
� is the

horizon-generating Killing vector, and d�b is the horizon
surface element. Both �a and d�b are parallel to the null
generator of the horizon, so the null energy condition on
the matter of which the body is composed implies

�E >�H�J; (6)

which can be written as

�J < �Jmax ¼ 2Mrþ
a

�E: (7)

This constraint guarantees that the body can fall across the
horizon starting from some point outside, although, in
general, it is in a bound orbit that does not come from
spatial infinity.

As long as �Jmin < �Jmax for some �E, there will be
values of �J satisfying both inequalities (3) and (7). If the
black hole starts out extremal (J ¼ M2, so a ¼ M ¼ rþ),
then �Jmin ¼ 2M�Eþ �E2 is never less than �Jmax ¼
2M�E, so it is impossible to overspin the black hole.
This was observed long ago by Wald [6]. In the sub-
extremal case, however, these inequalities can be satisfied.

To understand the nature of the allowed range, it is
helpful to visualize the inequalities graphically. If �Jmax

and �Jmin are plotted vs �E, the former is a straight line
through the origin, with slope 2Mrþ=a > 2M, while the
latter is a parabola with positive intercept and slope 2M at
the intercept and curved upwards. Some algebra reveals
that the parabola always intersects the straight line in two
points. The allowed values of �E and �J are those in the
compact region above the parabola and below the straight

line. Note that, if the �E2 is neglected in (3), the parabola
is replaced by a straight line, and no upper bound is
imposed on the allowed values. The case considered by
Hod [8], i.e., that of dropping the particle from a point on
the horizon, corresponds to the upper boundary of this
region �J ¼ �Jmax.
Rather than giving exact formulas, it is more illuminat-

ing to expand in the small dimensionless quantity � � 1
defined by

J=M2 ¼ a=M ¼ 1� 2�2: (8)

(Hubeny [7] used the same parameter to analyze the
charged case.) Also at this stage we adopt units with M ¼
1, which will keep the expressions simpler. Then we have

�Jmin ¼ 2�2 þ 2�Eþ �E2 (9)

and

�Jmax ¼ ð2þ 4�Þ�E; (10)

where terms of order Oð�2�EÞ have been dropped in (10).
The allowed range of �E lies where the difference

�Jmax � �Jmin ¼ 4��E� �E2 � 2�2 (11)

is positive, i.e.,

ð2� ffiffiffi
2

p Þ� < �E< ð2þ ffiffiffi
2

p Þ�: (12)

In particular, �E must be of order �, which is consistent
with the requirement (1) that the body make only a small
perturbation. For a given �E, the allowed values of �J are
near 2�E, so we must have

�J � �E: (13)

Note that the width (11) of the allowed range of �J is only
of order �2 � �.
As already mentioned, the black hole must start out very

nearly extremal, but now we can be somewhat more quan-
titative. According to (1) and (12) we must have � � 1,
and a� 1 ¼ 2�2 is parametrically smaller. For example, if
� ¼ 10�2, then the initial black hole must have a ¼
0:9998. For a thought experiment we can imagine even
smaller values of �. We conclude that, if the body can be
treated as a point test particle, the black hole can indeed be
overspun.
We turn now to consideration of the finite size require-

ments for the body, beginning with the case of orbital
angular momentum in the equatorial plane. Here the issue
is that, in order to have the required values of �E and �J,
the body might have to be in a bound orbit, which would
have a turning point at a maximum radius. In that case we
would need to require that the body be small enough to fit
outside the horizon at this radius. Since the body can be no
smaller than a black hole with the same rest mass, it is not
clear in advance whether this requirement could be met.
However, we find that this size constraint is not an issue,
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since in fact there are orbits that come in from infinity with
no turning point.

To address this point we recall that the proper time
derivative of the (Boyer-Lindquist) radial coordinate of
orbital motion in the equatorial plane satisfies _r2=2þ
Veffðr; ~E; ~LÞ ¼ 0, where the effective potential is given in
terms of the energy ~E and angular momentum ~L per unit
mass by [10]

Veff ¼ � 1

r
þ ~L2

2r2
� ð ~L� a ~EÞ2

r3
þ 1

2
ð1� ~E2Þ

�
1þ a2

r2

�
:

(14)

The turning points are located where VeffðrÞ ¼ 0. For the
energy �E we choose the value at the center of the allowed
region given above, so ~E ¼ 2�=m, wherem is the rest mass
of the body. The allowed range of the specific angular
momentum is then ð2þ 3�Þ ~E< ~L < ð2þ 4�Þ ~E, so we
are led to parametrize the specific angular momentum as
~L ¼ ð2þ b�Þ ~E, where 3< b< 4. If values of �, m, and b
can be found for which Veff < 0 everywhere outside the
horizon, then with such values a body can fall all the way
into the black hole from infinity.

We explored this question numerically and found that
such orbits indeed exist. Two examples with � ¼ 0:01 and
b ¼ 3:3 are m ¼ 0:01 ( ~E ¼ 2) and m ¼ 0:001 ( ~E ¼ 20).
To understand a bit more quantitatively we can focus on
large asymptotic velocity ~E � 1, dropping ~E independent
terms and expanding the potential out to second order in �,
which yields

Veff ¼ � ~E2

2
f1� ½3þ 4b�þ ðb2 þ 4Þ�2�r�2

þ ½2þ 4b�þ 2ðb2 þ 4Þ�2�r�3g: (15)

This potential is negative at r ¼ 0 and at r ¼ 1 and has a
single maximum at r ¼ 1þ 2b�=3þOð�2Þ, where it is
equal to �ð2� b2=6Þ ~E2�2 þOð�3Þ. Hence it is every-

where negative provided b <
ffiffiffiffiffiffi
12

p ’ 3:46, in which case
the body falls across the horizon.

Next, we examine whether requirements relating to the
size and structure of the body can be met in the spinning
case. For simplicity we assume that the body is dropped
along the symmetry axis. We first consider the case when
�E�m and the body is not spinning relativistically, so its
spin angular momentum is given by �J �mvR� �EvR,
where v is the surface velocity and R is the radius. The
condition v < 1 then implies R> �J=�E. We saw above
that the ratio �J=�E must be of order unity (13), that is, of
orderM. In this case the body must be larger than the black
hole, so it simply will not fit in the transverse direction, and
in any case treating it as a point particle with spin would be
unjustified, since that rests on the smallness of the size of
the body compared to the ambient radius of curvature.
Moreover, the radial tidal stress required to hold the body

together would be larger than the energy density, violating
energy conditions.
It cannot help to allow ultrarelativistic tangential veloc-

ity. The reason can be seen with a simple Newtonian
estimate. If the surface acceleration v2=R exceeds �1=R,
the required force exceeds m=R. But what could provide
this force to hold the body together? The self-gravitational
force �m2=R2 cannot produce this acceleration unless
m=R> 1, which is the condition that the body becomes a
black hole. A black hole cannot satisfy (4), so this will not
do. Alternatively, suppose the force is provided by internal
tension. Then the Tr̂ r̂ stress tensor component in an ortho-
normal rest frame must satisfy �Tr̂ r̂R

2 >m=R, and hence
�Tr̂ r̂ > m=R3. But the right-hand side is the energy den-
sity of the body, so this inequality violates all of the energy
conditions. The body would therefore need to be composed
of unphysical material. The conclusion is that it is impos-
sible to overspin the black hole if the body’s Killing energy
is close to its rest mass: �E�m.
Since the angular momentum involves the rest mass m,

not the Killing energy, it might be possible to achieve a
large enough �J with a small enough size R, without
requiring unphysical matter, by dropping the body from a
position where it is deeply bound: �E � m. This might be
achieved by slowly lowering the body on a tether, down to
near the black hole horizon, before dropping it in. Now we
reconsider whether the size restrictions can be met in this
setting.
We begin with the restrictions on the rest massm. Ifm is

much greater than �E, then the test body approximation
requires that we impose not only �E � 1ð¼ MÞ (1) but
also m � 1. There is also a lower bound on m, coming
from an upper bound on R: The angular momentum is
�J �mvR, and hence (restricting to nonrelativistic spin
v < 1 as required by the previous analysis) R> �J=m ’
4�=m. The requirement R � 1 then yields m � �. The
mass and size must therefore fall within the ranges

� � m � 1; 4�=m & R � 1: (16)

The inequality (6) guarantees that the body can cross the
horizon with the chosen values of energy and angular
momentum, but since the deeply bound drop point lies at
a finite distance from the horizon it is necessary to check
that (a) the spinning body would actually fall into the black
hole rather than being repelled and (b) the body is smaller
than the proper distance d from the horizon to the drop
point

R< d; (17)

so that it can fully fit outside the black hole and be
localized at the drop point.
To address these issues, we note [11] that a spinning

body of rest massm, moving along the axis of rotation, has
energy �E and angular momentum �J satisfying

�E��ðrÞ�J ¼ m�ðrÞNðrÞ; (18)
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where �ðrÞ is the gamma factor for the body relative to the
rest frame of the timelike Killing vector, and

NðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rþ a2

r2 þ a2

s
; �ðrÞ ¼ 2ar

ðr2 þ a2Þ2 ; (19)

respectively, are the norm of the Killing vector (which
vanishes at the horizon) and the limiting angular velocity
of zero angular momentum stationary observers as the axis
of rotation is approached. The body can exist at rest at
radial coordinate r, with the given values of the constants
of motion, if (18) is satisfied with �ðrÞ ¼ 1. The body will
fall in across the horizon from such a point provided (i) the
left-hand side of (18) is positive at the horizon [i.e., (6)
holds] and (ii) r is the closest radius to the horizon where
(18) is satisfied with �ðrÞ ¼ 1.

To estimate the maximum distance from the deeply
bound drop point to the horizon, for a given mass m, we
make use of the fact that N � 1 there. In this regime, and

for a near-extremal black hole, �ðrÞ ’ 1
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ N2=2

p
,

and so for the required values of energy and angular
momentum we have �E��ðrÞ�J ¼ Oð�2Þ þOð�NÞ.
This must be equal to mN, which according to (16) must
be ��N. It follows that � � N, and hence the horizon
value �H ’ 1

2 � � may be used for �ðrÞ. Using �Jmin (9),

we find ð�E��H�JÞmax ¼ �2 (which occurs for �E ¼
2�). On the other hand, near the horizon we haveN ’ �d ’
�d, where � is the surface gravity (equal to limr!rþjrNj)
and d is the proper distance to the horizon (orthogonal to
the surfaces N ¼ const). Hence the maximum value d can
take is d ’ �=m. According to (16), we must therefore have
d � 1, which justifies having used of the linear near-
horizon approximation to N [12].

Now we have come to the end of the road: In order to fit
outside the horizon at the drop point, the body must satisfy
R< d (17), so together with (16) we arrive at

4�=m & R< �=m: (20)

There is no safe value for R. If the body is large enough to
possess the requisite angular momentum with a physically
acceptable stress, then it is too large to fit outside the black
hole at the drop point.

In summary, we have considered gedanken experiments
where an object with spin or orbital angular momentum is
dropped into a near-extremal Kerr black hole, in an effort
to drive the black hole beyond the extremal limit. We have
found that, to the extent that radiative and self-force effects
can be neglected, the black hole can be overspun in the
orbital case, even with an object dropped from infinity. In
the spin case, kinematics allows overspinning, but the
requirement that the internal stresses satisfy the energy

conditions implies that the object is necessarily too large
to justify the kinematic analysis.
We saw that, from purely kinematic considerations, the

relation between the energy and angular momentum of the
dropped body must be very finely tuned: They are both of
order � in magnitude, but the allowed window for angular
momentum, given the energy, is only of order �2. Since the
overspinning process we found involves a delicate balance,
it is certainly possible that, although small, gravitational
radiation and/or self-force [13] effects may always manage
to preclude the overspinning. Indeed, given the existing
evidence for cosmic censorship, this seems likely. Our
analysis suggests a dynamical regime in which it may be
interesting to study these effects.
As a final remark, we note that if overspinning can be

achieved, then the likely formation of a naked singularity
could provide an escape from Hawking’s proof of the
second law of black hole mechanics [14], that the black
hole horizon area cannot decrease (or disappear), as well as
from Israel’s proof of the third law [15], that the surface
gravity cannot be reduced to zero in a finite time.
We thank E. Barausse, A. Buonanno, S. Liberati, and

E. Poisson for helpful discussions. This research was sup-
ported in part by the NSF under Grant No. PHY0601800,
and T. P. S. was also supported by STFC.

[1] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[2] S.W. Hawking and R. Penrose, Proc. R. Soc. A 314, 529

(1970).
[3] R. Penrose, Riv. Nuovo Cimento Soc. Ital. Fis. 1, 252

(1969) [reprinted as Gen. Relativ. Gravit. 34, 1141
(2002)].

[4] R.M. Wald, arXiv:gr-qc/9710068.
[5] R. Penrose, J. Astrophys. Astron. 20, 233 (1999), http://

adsabs.harvard.edu/abs/1999JApA...20..233P.
[6] R. Wald, Ann. Phys. (N.Y.) 82, 548 (1974).
[7] V. E. Hubeny, Phys. Rev. D 59, 064013 (1999).
[8] S. Hod, Phys. Rev. D 66, 024016 (2002).
[9] G. E. A. Matsas, M. Richartz, A. Saa, A. R. R. da Silva,

and D.A. T. Vanzella, Phys. Rev. D 79, 101502(R) (2009).
[10] R.M. Wald, General Relativity (University of Chicago

Press, Chicago, 1984).
[11] Y. Mino, M. Shibata, and T. Tanaka, Phys. Rev. D 53, 622

(1996); 59, 047502(E) (1999).
[12] More generally, in the near-horizon region (N � 1) of a

near-extremal black hole (� � 1), one finds NðrÞ ’ffiffiffi
2

p
� sinhðd= ffiffiffi

2
p Þ.

[13] Hod [8] suggested that the effect of self-force can be
estimated by making the replacement �H ! �H þ!�J
in the bound (6) and noted that if !> 1=8 this would
suffice to preclude overspinning.

[14] S.W. Hawking, Phys. Rev. Lett. 26, 1344 (1971).
[15] W. Israel, Phys. Rev. Lett. 57, 397 (1986).

PRL 103, 141101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

2 OCTOBER 2009

141101-4


