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We compute exactly the mean perimeter and area of the convex hull of N independent planar Brownian

paths each of duration T, both for open and closed paths. We show that the mean perimeter hLNi ¼ �N

ffiffiffiffi
T

p
and the mean area hANi ¼ �NT for all T. The prefactors �N and �N , computed exactly for all N, increase

very slowly (logarithmically) with increasing N. This slow growth is a consequence of extreme value

statistics and has interesting implications in an ecological context in estimating the home range of a herd

of animals with a population size N.
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Ecologists often need to estimate the home range of an
animal or a group of animals, in particular, for habitat-
conservation planning [1]. The home range of a group of
animals simply means the two-dimensional space over
which they typically move around in search of food.
There exist various methods to estimate this home range,
based on the monitoring of the positions of the animals
over a certain period of time [2]. One method consists in
drawing the minimum convex polygon enclosing all moni-
tored positions, called the convex hull. While this may
seem simpleminded, it remains, under certain circumstan-
ces, the best way to proceed [3]. The monitored positions,
for one animal, will appear as the vertices of a path whose
statistical properties will depend on the type of motion the
animal is performing. In particular, during phases of food
searching known as foraging, the monitored positions can
be described as the vertices of a random walk in the plane
[4,5]. For animals whose daily motion consists mainly in
foraging, quantities of interest about their home range,
such as its perimeter and area, can be estimated through
the average perimeter and area of the convex hull of the
corresponding random walk [Fig. 1(a)]. If the recorded
positions are numerous (which might result from a very
fine and/or long monitoring), the number of steps of the
randomwalker becomes large and to a good approximation
the trajectory of a discrete-time planar random walk (with
finite variance of the step sizes) can be replaced by a
continuous-time planar Brownian motion of a certain du-
ration T.

The home range of a single animal can thus be charac-
terized by the mean perimeter and area of the convex hull
of a planar Brownian motion of duration T starting at
origin O. Both ‘‘open’’ (where the end point of the path
is free) and ‘‘closed’’ paths (that are constrained to return
to the origin in time T) are of interest. The latter corre-
sponds, for instance, to an animal returning every night to
its nest after spending the day foraging in the surroundings.

For an open path, the mean perimeter hL1i ¼
ffiffiffiffiffiffiffiffiffiffi
8�T

p
and

the mean area hA1i ¼ �T=2 are known in the mathematics

literature [6–8]. For a closed path, only the mean perimeter

is known [9]: hL1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3T=2

p
.

In any given habitat, however, an animal is hardly alone;
they live in herds with typically a large population size N.
To study their global home range via the convex hull
model, one needs to study the convex hull of N planar
Brownian motions. Assuming that the animals do not
develop any substantial interaction between them during
foraging, this leads us to the main question addressed in
this Letter: What is the mean perimeter and area of the
convex hull of N independent planar Brownian motions
(both open and closed) each of duration T? This question is
of vital importance in ecological conservation: if the popu-
lation size increases by, say tenfold, by how much should
one increase the home range, i.e., the conservation area?
Using the standard scaling property of Brownian mo-

tion, length scale� ðtime scaleÞ1=2, it follows that the
mean perimeter and area of the global convex hull of N

independent Brownian paths will behave as hLNi ¼ �N

ffiffiffiffi
T

p
and hANi ¼ �NT for all T. The main challenge is to
estimate the N dependence of the prefactors �N and �N.
The central result of this Letter is to provide exact formulas
for �N and �N for all N, both for open and closed paths.
Most interestingly, we find that the mean perimeter and

area of the convex hull increases very slowly with N for

large N: �N ’ 2�
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
, �N ’ 2� lnN for open paths,

FIG. 1 (color online). Convex hull of (a) a seven-step random
walk starting at O and (b) three closed Brownian paths.
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and �NðcÞ ’ �
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
, �NðcÞ ’ �

2 lnN for closed paths, c

referring to closed paths. This leads to our main conclu-
sion: the home range increases very slowly with increasing
population size. Indeed, the lnN behavior of the prefactor
�NðcÞ in the mean area indicates that, for instance, a
tenfold increase in the number of animals in the herd will
result, on average, in the addition of only about 3.6 T units
of area to the home range of the herd—good news for
conservation.

To proceed, let I denote any set of points on the plane
with coordinates ðxi; yiÞ. Let C denote the convex hull of I,
i.e., the minimal convex polygon enclosing this set.
Geometrically, the convex hull can be constructed very
simply: consider any arbitrary direction from the origin
O specified by the angle � with respect to the x axis. Bring
a straight line from infinity perpendicularly along direction
� and stop when it touches a point of the set I [e.g., in
Fig. 2, this point has coordinates ðxk� ; yk� Þ]. Let Mð�Þ
denote the Euclidean distance of this perpendicular line
from the origin when it stops, measuring the maximal
extension of the set I along the direction �. This support
function can be simply written as

Mð�Þ ¼ max
i2I

fxi cos�þ yi sin�g: (1)

KnowingMð�Þ, one can express the perimeter and the area
of the convex hull C via Cauchy’s formulas [10]:

L ¼
Z 2�

0
d�Mð�Þ (2)

A ¼ 1

2

Z 2�

0
d�½M2ð�Þ � ðM0ð�ÞÞ2�; (3)

where M0ð�Þ ¼ dM=d�. In this Letter we show how these
two formulas can be used to compute the mean perimeter
and area of the convex hull of N planar Brownian motions.

To illustrate the main idea let us start with a single open
Brownian path; the generalizations to N > 1 and for closed
paths will follow. In this case the set I consists of the
vertices of a Brownian path of duration T starting at the

originO. Since it is a continuous path, we can conveniently
label the coordinates by Bð�Þ ¼ ðxð�Þ; yð�ÞÞ with 0 � � �
T. Here xð�Þ and yð�Þ are just two independent one-
dimensional Brownian paths each of duration T and evolve
via the Langevin equations: _xð�Þ ¼ �xð�Þ and _yð�Þ ¼
�yð�Þ where �xð�Þ and �yð�Þ are independent Gaussian

white noises, each with zero mean and delta correlated,
e.g., h�xð�Þ�xð�0Þi ¼ �ð�� �0Þ and the same for �y.

Clearly then hx2ð�Þi ¼ � and hy2ð�Þi ¼ �.
Let us now consider a fixed direction �. Then, z�ð�Þ ¼

xð�Þ cos�þ yð�Þ sin� and h�ð�Þ ¼ �xð�Þ sin�þ yð�Þ cos�
are also two independent one-dimensional Brownian mo-
tions (each of duration T) parametrized by �. ThenMð�Þ in
Eq. (1) is simply the maximum of the one-dimensional
Brownian motion z�ð�Þ over the time interval � 2 ½0; T�,
i.e., Mð�Þ ¼ max½z�ð�Þ�. Let �� be the time at which this
maximum is achieved. Then, Mð�Þ ¼ z�ð��Þ ¼ xð��Þ�
cos�þ yð��Þ sin�. Taking derivative with respect to �
gives M0ð�Þ ¼ �xð��Þ sin�þ yð��Þ cos� ¼ h�ð��Þ. Thus,
while Mð�Þ is the maximum value of the first Brownian
motion z�ð�Þ,M0ð�Þ is the value of the second independent
Brownian motion h�ð�Þ but at the time � ¼ �� at which the
first one achieves its maximum [see Figs. 3(a) and 3(b)].
Note, in particular, that for � ¼ 0, z0ð�Þ ¼ xð�Þ and
h0ð�Þ ¼ yð�Þ. Thus Mð0Þ is the maximum of xð�Þ in � 2
½0; T� while M0ð0Þ ¼ yð��Þ is the value of y at the time ��
when x achieves its maximum.
Taking the expectation value and using isotropy of the

mean over the choice of directions, it follows that

hLi ¼ 2�hMð0Þi (4)

hAi ¼ �ðh½Mð0Þ�2i � h½M0ð0Þ�2iÞ: (5)

For a one-dimensional Brownian motion xð�Þ over ½0; T�,
the distribution of its maximum is well known [11]. The

cumulative distribution, Q1ðm; TÞ ¼ Prob½Mð0Þ � m� ¼
erfðm=

ffiffiffiffiffiffi
2T

p Þ, where erfðzÞ ¼ 2ffiffiffi
�

p R
z
0 e

�u2du. The first two

moments can be easily computed: hMð0Þi ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2T=�

p
and

h½Mð0Þ�2i ¼ T. Equation (4) then gives the mean perime-

ter, hL1i ¼ �1

ffiffiffiffi
T

p
with �1 ¼

ffiffiffiffiffiffiffi
8�

p
. The calculation of the

mean area is slightly trickier since we need h½M0ð0Þ�2i. We
first note that for any fixed time ��, E½y2ð��Þ� ¼ �� (since it
is a free Brownian motion) where the expectation is taken
over all realizations of the process y at fixed ��. But ��

FIG. 2 (color online). Support function of a seven-step random
walk.

FIG. 3. (a) Location �� of the maximum Mð�Þ of z�ð�Þ and
(b) corresponding value of M0ð�Þ ¼ h�ð��Þ.
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itself is a random variable, being the time at which the first
process x achieves its maximum. Its distribution is also
well known and given by the celebrated arcsine law of

Lévy [12]: Pð��; TÞ ¼ ½��ðT � ��Þ��1=2=�. Thus, averag-
ing further over �� taken from this distribution, we finally
get h½M0ð0Þ�2i ¼ h��i ¼ T=2. Equation (5) then gives the
exact mean area hA1i ¼ �1T with �1 ¼ �=2.

For a single closed path, the analysis is similar, except
that xð�Þ and yð�Þ are now two independent one-
dimensional Brownian bridges of duration T; i.e., both
start at the origin but are constrained to return to the origin
at time T: xð0Þ ¼ xðTÞ ¼ 0 and yð0Þ ¼ yðTÞ ¼ 0. The
distribution of the maximum of a Brownian bridge is also
well known [11] and its first two moments are given by

hMð0Þi ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�T=8

p
and h½Mð0Þ�2i ¼ T=2. Thus, the mean

perimeter of the convex hull is given from Eq. (4): hL1i ¼
�1ðcÞ

ffiffiffiffi
T

p
with �1ðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
�3=2

p
. To compute the mean area,

we note that for a Brownian bridge yð�Þ, at fixed time ��,
E½y2ð��Þ� ¼ ��ðT � ��Þ=T. Moreover, the distribution of
��, the time at which a bridge achieves its maximum, is
known to be uniform [11]. Thus, taking average over ��
with uniform distribution, Pð��; TÞ ¼ 1=T, we get
hM0ð0Þ2i ¼ hy2ð��Þi ¼ T=6. Equation (5) then gives the
exact mean area of the convex hull of a planar closed
Brownian path: hA1i ¼ �1ðcÞT with �1ðcÞ ¼ �=3. To our
knowledge, this result, even for a single closed path, ap-
pears to be new.

This method can then be generalized to N independent
planar Brownian paths, open or closed. We now have two
sets ofN Brownian paths: xjð�Þ and yjð�Þ (j ¼ 1; 2; . . . ; N).

All paths are independent of each other. Since isotropy
holds, we can still use Eqs. (4) and (5), except that Mð0Þ
now denotes the global maximum of a set ofN independent
one-dimensional Brownian paths (or bridges for closed
paths) xjð�Þ (j ¼ 1; 2; . . . ; N), each of duration T,

Mð0Þ ¼ max
1�j�N

max
0���T

½x1ð�Þ; x2ð�Þ; . . . ; xNð�Þ�: (6)

Let j� and �� denote the label of the path and the time at
which this global maximum is achieved. Then, using argu-
ment similar to the N ¼ 1 case, it is easy to see that
M0ð0Þ ¼ yj� ð��Þ, i.e., the position of the j�th y path at the

time when the x paths achieve their global maximum.
To compute the first two moments of Mð0Þ, we first

compute the distribution PN½Mð0Þ; T� of the global maxi-
mum of N independent Brownian paths (or bridges) xjð�Þ.
This is a standard extreme value calculation. Consider first
N open Brownian paths. It is easier to compute the cumu-
lative probability, QNðm; TÞ ¼ Prob½Mð0Þ � m�. Since the
Brownian paths are independent, it follows that

QNðm; TÞ ¼ ½Q1ðm; TÞ�N, where Q1ðm; TÞ ¼ erfðm=
ffiffiffiffiffiffi
2T

p Þ
for a single path mentioned before. Knowing this cumula-
tive distribution QNðMð0Þ; TÞ, the first two moments
hMð0Þi and h½Mð0Þ�2i can be computed for all N. Using
the result for hMð0Þi in Eq. (4) gives us the mean perimeter,

hLNi ¼ �N

ffiffiffiffi
T

p
with

�N ¼ 4N
ffiffiffiffiffiffiffi
2�

p Z 1

0
du ue�u2½erfðuÞ�N�1: (7)

The first few values are �1 ¼
ffiffiffiffiffiffiffi
8�

p ¼ 5:013 . . . , �2 ¼
4

ffiffiffiffi
�

p ¼ 7:089 . . . , �3 ¼ 24tan�1ð1= ffiffiffi
2

p Þ= ffiffiffiffi
�

p ¼ 8:333 . . . ,
etc. (see Fig. 4 for a plot of �N versus N). For large N, one
can analyze the integral in Eq. (7) by the saddle point

method giving [13] �N ’ 2�
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
. This logarithmic de-

pendence on N is thus a direct consequence of extreme
value statistics [14], and the calculation of the mean pe-
rimeter of the convex hull of N paths is a nice application
of extreme value statistics.
To compute the mean area, we need to calculate

h½M0ð0Þ�2i in Eq. (5). We proceed as in the N ¼ 1 case.
For a fixed label j and fixed time �, the expectation
E½y2j ð�Þ� ¼ �, which follows from the fact that yjð�Þ is

simply a Brownian motion. Thus, E½y2j� ð��Þ� ¼ ��. Next,
we need to average over ��, which is the time at which the
global maximum in Eq. (6) happens. The distribution
PNð��; TÞ of the time of global maximum ofN independent
Brownian motions, to our knowledge, is not known in the
probability literature. Wewere able to compute this exactly
for all N [13]. Skipping details, we find that PNð��; TÞ ¼
1
T FNð��=TÞ where

FNðzÞ ¼ aNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp Z 1

0
dx xe�x2½erfðx ffiffiffi

z
p Þ�N�1 (8)

and aN is a normalization constant fixed by
R
1
0 FNðzÞdz ¼

1. It is easy to check that for N ¼ 1, it reproduces the
arcsine law mentioned before. Averaging over �� drawn
from this distribution, we can then compute h½M0ð0Þ�2i ¼R
T
0 �

�PNð��; TÞd��. Substituting this in Eq. (5) gives the
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FIG. 4 (color online). Setting T ¼ 1, the analytical results for
average perimeter �N [Eq. (7)] and area �N [Eq. (9)] of N open
(Op.) Brownian paths, and similarly the average perimeter �NðcÞ
[Eq. (10)] and area �NðcÞ [Eq. (11)] of N closed (Cl.) Brownian
paths, plotted against N. The symbols denote results from
numerical simulations (up to N ¼ 4).
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exact mean area for all N, hANi ¼ �NT with

�N ¼ 4N
ffiffiffiffi
�

p Z 1

0
duu½erfðuÞ�N�1½ue�u2 � gðuÞ�; (9)

where gðuÞ ¼ ð1=2 ffiffiffiffi
�

p ÞR1
0½e�u2=tdt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞp �. For ex-

ample, the first few values are given by �1 ¼ �=2 ¼
1:570 . . . , �2 ¼ � ¼ 3:141 . . . , �3 ¼ �þ 3� ffiffiffi

3
p ¼

4:409 . . . , etc. (Figure 4 shows a plot of �N versus N.)
The large N analysis gives [13] �N ’ 2� lnN. Thus for
large N, the shape of the convex hull approaches a circle of

radius
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
which, incidentally, coincides with the set of

distinct sites visited by N Brownian motions [15].
For N closed Brownian planar paths one proceeds in a

similar way. Without repeating the analysis, we just men-
tion our main results [13]. The mean perimeter and area are

given by hLNi ¼ �NðcÞ
ffiffiffiffi
T

p
and hANi ¼ �NðcÞT where, for

all N,

�NðcÞ ¼ �3=2ffiffiffi
2

p XN
k¼1

N
k

� � ð�1Þkþ1ffiffiffi
k

p (10)

�NðcÞ ¼ �

2

�XN
k¼1

1

k
� N

3
þ 1

2

XN
k¼2

ð�1ÞkfðkÞ
�

(11)

and

fðkÞ ¼ N
k

� �
ðk� 1Þ�3=2½ktan�1ð ffiffiffiffiffiffiffiffiffiffiffiffi

k� 1
p Þ � ffiffiffiffiffiffiffiffiffiffiffiffi

k� 1
p �:

The first few values are �1ðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
�3=2

p ¼ 3:937 . . . ,

�2ðcÞ ¼
ffiffiffiffiffiffi
�3

p
ð ffiffiffi

2
p � 1=2Þ ¼ 5:090 . . . , �3ðcÞ ¼ffiffiffiffiffiffi

�3
p

ð3= ffiffiffi
2

p � 3=2þ 1=
ffiffiffi
6

p Þ ¼ 5:732 . . . , and �1ðcÞ ¼
�=3 ¼ 1:047 . . . , �2ðcÞ ¼ �ð4þ 3�Þ=24 ¼ 1:757 . . . ,
�3ðcÞ ¼ 2:250 . . . , etc. [see Fig. 4 for a plot of �NðcÞ
and �NðcÞ versus N). Large N analysis shows that [13]

�NðcÞ ’ �
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
and �NðcÞ ’ �

2 lnN, smaller, respec-

tively, by a factor 1=2 and 1=4 than the corresponding
results for open paths.

We have also computed the mean perimeter and area of
the convex hull of N ¼ 1; 2; 3; 4 Brownian paths (both
open and closed) via numerical simulations. For each N,
we constructed N independent normal Gaussian random
walks of 104 steps each with a time step �� ¼ 10�4. For
each realization of the N walks, we constructed the convex
hull using the Graham scan algorithm [16] and computed
its perimeter and area and then averaged over 103 samples.
We find excellent agreement with our analytical predic-
tions (Fig. 4).

The method presented here is general and can, in prin-
ciple, be applied to compute the mean perimeter and area
of the convex hull of any set of random points. In fact,
when the set consists of just random points, each drawn
independently from a given distribution, the statistics of
the perimeter and area of their convex hull has been studied
before [17]. Our method, using extreme value statistics,
can easily recover these results [13], but can go further,
e.g., when the points are correlated as in the case of
Brownian paths.

This work leads to several interesting open questions. It
would be interesting to extend the results presented here
for normal diffusion to the case where the trajectories of
animals such as birds, deer, or spider monkeys undergo
anomalous diffusion, e.g., Lévy flights [18–20]. Another
interesting question concerns the effect of interactions or
collective behavior of the animals on the statistics of their
convex hulls. For animals like birds that move in three-
dimensional space, it would be interesting to study the
statistics of the convex polytope of their trajectories, such
as the mean surface area and the volume of such a polytope
[13]. Finally, the distribution of the time of maximum ��, a
crucial ingredient in our method, has recently been com-
puted exactly for a variety of constrained one-dimensional
Brownian motions [21]. These results may be useful to
study the statistics of convex hulls of constrained planar
Brownian paths (see, e.g., [22]).
We thank D. Dhar and H. Larralde for useful

discussions.
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