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Quantum phase transitions occur at zero temperature, when the ground state of a Hamiltonian

undergoes a qualitative change as a function of a control parameter. We consider a particularly interesting

system with competing one-, two-, and three-body interactions. Depending on the relative strength of

these interactions, the ground state of the system can be a product state, or it can exhibit genuine tripartite

entanglement. We experimentally simulate such a system in a NMR quantum simulator and observe the

different ground states. By adiabatically changing the strength of one coupling constant, we push the

system from one ground state to a qualitatively different ground state. We show that these ground states

can be distinguished and the transitions between them observed by measuring correlations between the

spins or the expectation values of suitable entanglement witnesses.
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Introduction.—At zero temperature, a system can
undergo a quantum phase transition (QPT) to a new
ground state as a result of a change in a parameter of
the Hamiltonian [1]. Well-known examples are the
superconductor-insulator transition and the paramagnetic-
antiferromagnetic transition in quantum magnets. QPTs
were experimentally observed in magnetic systems [2],
heavy-fermion metals [3], common metals [4], and
Bose-Einstein condensation [5]. The investigation of
QPTs is useful for discovering novel materials [6], and
some QPTs show interesting entanglement characteristics
[7]. A collection of reviews [8] on the topic of QPTs
reported the current status and recent developments in
this field.

In most systems studied, attention was focused on two-
body interactions, which are most readily accessible ex-
perimentally. On the other hand, systems with three-body
interactions have been shown to exhibit exotic quantum
phases in their ground states [9], such as topological phases
or spin liquids and a chiral phase. However, it is difficult to
observe these properties in experiments. The main chal-
lenges are (i) to identify experimentally accessible systems
with three-body interactions, (ii) to experimentally control
the variation of the system Hamiltonian in a sufficiently
precise manner, and (iii) to characterize the resulting
ground state.

QPTs are generally associated with strongly correlated
quantum systems, which cannot be efficiently simulated on
classical computers because the required computational
resources grow exponentially with the system size. As
suggested by Feynman [10] and proved by Lloyd [11],
however, a quantum computer can efficiently perform
this kind of simulation and provide new insight into
strongly correlated quantum systems, including QPTs.
Previous examples of such studies include the simulation
of a three-body Hamiltonian [12] and quantum magnets in

a two-spin Heisenberg chain using nuclear spins [13] as
well as trapped ions [14].
In this Letter, we experimentally simulate the smallest

spin system involving a three-body interaction in a NMR
quantum simulator. Such systems are the building blocks
of triangular Ising nets [15] and triangular spin ladders
[16], which have been studied in detail in the context of
quantum statistics [17] and condensed matter theory
[9,18]. In general, the competition between the different
interactions results in QPTs. Here we prepare the system in
the ground state of the Hamiltonian and drive it from one
phase into a different phase by adiabatically changing the
Hamiltonian. By quantifying different types of entangle-
ment, or by using suitable entanglement witnesses [19], we
successfully detect the quantum transition induced by the
three-body interactions. In the thermodynamic limit, this
transition should correspond to a novel type of QPT [16].
System.—Consider a chain of N spins 1=2 in a uniform

magnetic field, interacting by Ising-type nearest-neighbor
two-body and three-body couplings:

H ¼ !z

X
�i

z þ!x

X
�i

x þ J2
X

�i
z�

iþ1
z

þ J3
X

�i
z�

iþ1
z �iþ2

z ; (1)

where the �i
z are the Pauli operators, !z and !x are the

strengths of the longitudinal and transverse magnetic
fields, and J2, J3 are the two-body and three-body coupling
constants. The competition between the three kinds of
interactions (one-, two-, and three-body) determines the
ground state of the system. We first consider two limiting
cases, corresponding to the two- and three-spin Ising mod-
els. In both cases, we discuss explicitly the situation for
positive coupling constants !z;!x; J2; J3 > 0.
(i) Two-spin Ising model (J3 ¼ 0) [1].—[i(a)] In a lon-

gitudinal magnetic field (!x ¼ 0). The level crossing at

PRL 103, 140501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

2 OCTOBER 2009

0031-9007=09=103(14)=140501(4) 140501-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.140501


J2 ¼ !z corresponds to a first-order phase transition of the
ground state from a paramagnetic state jc P

g i ¼ j . . . ## . . .i
in the weak-coupling case (J2 <!z) to a twofold degen-
erate, antiferromagnetically ordered ground state:
jc AFM

g i ¼ fj . . . "# . . .i; j . . . #" . . .ig in the strong-coupling

case (J2 >!z ). In the case of ferromagnetic cou-
pling (J2 < 0), no QPT occurs. [i(b)] Two-spin Ising
model in a transverse magnetic field (i.e., !z ¼ 0). This
well-studied model exhibits a second-order QPT at J2 ¼
!x in the thermodynamic limit [1], where the ground

state changes from the paramagnetic phase jc P0
g i ¼

j . . .  . . .i to the antiferromagnetically ordered, doubly
degenerate ground state jc AFM

g i. Here j i ¼ ðj"i �
j#iÞ= ffiffiffi

2
p

. These two cases are exactly solvable and the
induced phase transitions can be detected by the traditional
two-point correlation functions [1].

(ii) Three-spin Ising model with J2 ¼ 0 in a transverse
magnetic field (i.e., !z ¼ 0).—This model is not ex-
actly solvable, but numerical simulations predict a
critical point at J3 ¼ !x. The strong-coupling phase
(J3 >!x) is fourfold degenerate: jc F

g i ¼ fj . . . ### . . .i;
j . . . #"" . . .i; j . . . "#" . . .i; j . . . ""# . . .ig, while the nondegen-
erate ground state of the weakly coupled phase is the

paramagnetic state jc P0
g i [20].

In the following, we demonstrate these features in a
proof-of-principle experiment using N ¼ 3 spins and pe-
riodic boundary conditions�Nþ1

z ¼ �1
z . Figure 1 shows the

ground state of the system. The competition between the
three kinds of interactions (one-, two-, and three-body)
results in different ground-state phases (product, W, and
GHZ states). In regime I, the ground states are product
states, in phase II, they areW-type states, and in regime III,
they are GHZ-type states. The GHZ and W states are the
only two inequivalent kinds of genuine tripartite entangle-
ment in a three-spin system [21]. As a result, such a simple
model allows us to experimentally study the two inequi-
valent states of genuine tripartite entanglement and the
novel phenomena induced by three-spin interactions.

Quantum simulation.—We chose the diethyl-
fluoromalonate molecule as a three-spin NMR quantum
simulator, in which the 13C, 1H, and 19F nuclear spins are
represented by spins 1, 2, and 3, respectively. The molecu-
lar structure and the relevant parameters are shown in
Fig. 2(a). The natural Hamiltonian of the system is

H NMR ¼
P

3
i¼1

!i

2 �i
z þ

P
3
i<j;i¼1

�Jij
2 �i

z�
j
z.

From this natural Hamiltonian, we generate the model
Hamiltonian (1) with equal two-body coupling strengths
by a suitable refocusing scheme [22]. The three-
body interaction can be simulated by a combination of
two-body interactions and rf pulses [12]. Since all
terms in the Hamiltonian (1), except the transverse field
term, commute with each other, we expand the overall

evolution by the following concatenation: e�iH � ¼
e�iH x�=2e�iH z�e�iH x�=2 þOð�3Þ. Here, H x ¼ !x

P
�i

x

and H z ¼H �H x. This expansion faithfully repre-

sents the targeted evolution provided the duration � is
kept sufficiently short. Figure 2(b) shows the pulse se-

quence that realizes e�iH �.
In order to observe the system undergoing the transi-

tions, it must always be close to the instantaneous ground
state of the time-dependent Hamiltonian. This was
achieved by quantum adiabatic evolution [23], which re-
quires (i) the system starts in the ground state of H ð0Þ,

FIG. 1 (color online). Schematic phase diagram of the ground
state of the Hamiltonian H for N ¼ 3. Panels (a)–(c) represent
two-dimensional sections through parameter space perpendicu-
lar to the !z axis, and the table (d) identifies the ground states in
the different areas. Here jGHZ�i ¼ ðj"""i � j###iÞ=

ffiffiffi
2
p

and H is
the Hardamard gate. The arrows in (a) and (b) represent the
adiabatic evolutions discussed in the experimental section.
For (a) and (c), !x is assumed to be small, i.e., j!xj � j!zj.

FIG. 2 (color online). (a) Molecular structure and properties of
the quantum register: diethyl-fluoromalonate. The oval marks
the three spins used in the experiment. The table on the right
summarizes the relevant NMR parameters measured at room
temperature on a Bruker Avance II 500 MHz (11.7 T) spec-
trometer, i.e., the Larmor frequencies !i=2� (on the diagonal),
the J coupling constants Jij (below the diagonal), and the

relaxation times T1 and T2 in the last two columns. (b) Pulse
sequence for simulating the Hamiltonian of Eq. (1). The narrow
black rectangles represent small-angle rotations, the narrow
empty rectangles denote 90� rotations, and the wide ones denote
the refocusing 180� pulses. The delays are �i ¼
J2�=½1=ð�JijÞ þ 1=ð�JjkÞ� with (i; j; k) an even permutation of

(1; 2; 3) and d1 ¼ 2J3�=ð�J12Þ. The offsets between the irradia-
tion frequencies and the corresponding Larmor frequencies are
FQ1 ¼ 2!z�=ð�1 � �2 þ 3�3Þ, FQ2 ¼ 2!z�=ð�1 þ �2 � �3Þ,
and FQ3 ¼ 2!z�=ð�1 þ �2 þ �3Þ.
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(ii) H ðtÞ changes sufficiently slowly to satisfy the adia-
batic condition. For the experimental implementation, we
discretized the time-dependent Hamiltonian H ðtÞ into
Mþ 1 segments H ðmÞ ¼H ðCðmM TÞÞ with m ¼
0; 1; . . . ;M [24], where T is the total duration of the
adiabatic passage and C is the control parameter in
H ðtÞ. The adiabatic condition is satisfied when both
T;M ! 1 and the duration of each step �! 0.

To observe the different types of transitions in the
Hamiltonian (1), we chose two different parameter sets.

Case A.—Transition from a product state to a W-type
entangled state: the control parameter is the two-body cou-
pling strength J2, which varies from 0 to 2. The other
parameters of the Hamiltonian are constant, !z ¼ �2,
!x ¼ 0:09, and J3 ¼ 0, as shown in Fig. 1(a).

Case B.—Transition from a product state to a GHZ-type
entangled state: the control parameter is the three-body
coupling strength J3, which varies from 0 to 2, with !z ¼
J2 ¼ 0 and !x ¼ 0:12, as shown in Fig. 1(b).

We used a hyperbolic sine for the time dependence of
the control parameters J2 and J3 in the experiments [13].

To determine the optimal number M of steps in the
adiabatic transfer, we used a numerical simulation of the
minimum fidelity encountered during the scan as a func-
tion of the number of steps into which the evolution is
divided (see Fig. 3). The fidelity is calculated as the overlap
of the state with the ground-state at the relevant position.
Using the decoherence model of Vandersypen et al. [25],
we also simulated the effects of decoherence under the
actual (piecewise constant) Hamiltonian generated by the
pulse sequence of Fig. 2(b). The resulting fidelity of these
points, which is represented by the boxes in Fig. 3, is
consistently lower than that of the ideal Hamiltonian and
reaches a maximum for M � 8. For the experiments, we
therefore chose M ¼ 8.

Detection of transition points.—The conventional ap-
proach to detect the system undergoing an entangling
phase transition is to measure two-spin correlations like

Cxx ¼ 1
3

P
i�jh�i

x�
j
xi. The result of such a measurement is

shown in Fig. 4. The result clearly shows the expected
transition for case A: The two-spin correlation goes
through a steplike increase at J2 � 1, consistent with the
expectation that the ground state should change from a
product state to a W state at this value of the coupling
strength. However, in case B, where the system should start
in a product state and end up in a GHZ state, the measured
two-spin correlations give no indication of this transition.
In order to obtain a clean signature of this novel tran-

sition, induced by three-body interactions, we employed
entanglement witnesses [19]. These witness operators can
always be used to detect various forms of multipartite
entanglement, provided we have some a priori knowl-
edge about the states under investigation. In our context,
the two witness operators WW ¼ 2

3 1� jW001ihW001j and
W GHZ ¼ 3

4 1� jGHZ�ihGHZ�j are useful for detecting

multipartite entanglement. If their expectation value is
negative, they indicate the presence of genuine tripartite
entanglement; Trð�W GHZÞ< 0 specifically detects GHZ-
type entanglement. To perform these measurements, we
applied a basis transformation to the density operator and
destroyed the off-diagonal elements with pulsed magnetic
field gradients to implement the projective measurement
[26]. The populations were readout by applying, in three
separate experiments,�=2 readout pulses to each qubit and
measuring the resulting transverse magnetization.
We first initialized the system into the ground state of the

initial Hamiltonians [27] and then varied the Hamiltonians
adiabatically. To minimize nonadiabatic effects, the scan
had to be relatively slow, lasting about 146 ms for case A
and 62 ms for case B. Spin relaxation therefore reduced the
signal for the later times compared to the initial part of the
scan. To separate this effect from the effect of the transition
and obtain a cleaner signature, we first determined the
overall signal decay and rescaled the data to remove this
effect.
Figure 5 summarizes the experimental results for both

cases, using both entanglement witnesses. Both transitions
are now clearly visible, and the tripartite entanglement is
present in both final states. Together with the measurement

FIG. 3 (color online). Numerical simulation of the minimum
fidelities during the adiabatic passage versus the number of steps
for the ideal (piecewise constant) Hamiltonian (�) and for the
more realistic case that includes the actual pulse sequence
generated by average Hamiltonian approximation (AHA) and
the effect of decoherence (h) for both cases A and B.

FIG. 4 (color online). Experimental detection of quantum tran-
sition points by two-spin correlations C

exp
xx (� and þ), together

with the simulated correlations Csim
xx (� and h), which take the

effect of decoherence into account. The effective decoherence
time Teff

2 was estimated as 150 ms for case A and 600 ms for

case B.
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of the two-spin correlations in Fig. 4, we can also differ-
entiate between the two types of transitions. In case A, the
increasing strength of the two-body interaction J2 pushes
the system from a product state to aW state, but in case B,
the increase in the three-body interaction strength J3 gen-
erates a GHZ state.

We also determined the details of the final state at the
end of the scan, by performing complete quantum state
tomography [28]. The experimentally generated state �exp

had an overlap of F ¼ jhc idj�expjc idij with the ideal state

jc idi of 0.61 for the W state and 0.73 for the GHZ state.
The reduced fidelity mainly results from relaxation during
the long adiabatic passage. As in the case of the wit-
ness measurements during the scan, we also removed
the effect of spin relaxation from the measured final states
by calculating the ‘‘experimental fidelity’’ [29] F ¼
jhc idj�expjc idi=Trð�2

expÞj. The observed data yielded

Fð�W
expÞ ¼ 0:90 and Fð�GHZ

exp Þ ¼ 0:92, in excellent agree-

ment with theoretical expectations.
Conclusion.—Using a NMR quantum simulator, we

have performed an experimental quantum simulation of a
system with competing one-, two-, and three-body inter-
actions. By adiabatically changing the Hamiltonian, we
could observe the system undergoing two different entan-
gling transitions. The generation of entanglement confirms
that the transitions are of quantum-mechanical origin
(analogous to quantum fluctuations in QPTs). In particular,
with suitable entanglement witnesses as observables, we
detected a novel transition induced by three-body interac-
tions that is qualitatively different from the states that can
be characterized by two-spin correlations.

We consider our present experiment based on a universal
simulator as a first experimental step that demonstrates
how one can obtain a clear picture of phase transitions in
ground states of many-body Hamiltonians, with the help of
tools coming from the theory of entanglement. Systems
consisting of more than three subsystems can display even
more different phases in their ground states. We expect that
entanglement witnesses will turn out to be useful for
detecting ground-state phases in larger systems, together
with other entanglement measures (e.g., the global entan-
glement [30]).
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