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We study the thermodynamics of a one-dimensional attractive Fermi gas (the Gaudin-Yang model) with

spin imbalance. The exact solution has been known from the thermodynamic Bethe ansatz for decades, but

it involves an infinite number of coupled nonlinear integral equations whose physics is difficult to extract.

Here the solution is analytically reduced to a simple, powerful set of four algebraic equations. The

simplified equations become universal and exact in the experimental regime of strong interaction and

relatively low temperature. Using the new formulation, we discuss the qualitative features of finite-

temperature crossover and make quantitative predictions on the density profiles in traps. We propose a

practical two-stage scheme to achieve accurate thermometry for a trapped spin-imbalanced Fermi gas.
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Alkali fermionic atoms at tens of nanokelvins are a re-
markable addition to correlated quantum matter. Their in-
teraction is unprecedentedly tunable from attractive to re-
pulsive infinity. This allows, for instance, the observation
of universal properties of Fermi superfluids at unitarity. Re-
cent developments [1,2] provide imbalanced populations
of cold atoms in different hyperfine (spin) states, adding a
new dimension in the low-temperature phase diagram [3].
In low dimensions, such attractive Fermi gases with spin
imbalance give rise to a series of very interesting phases.
For example, it was suggested that the quasi-one-
dimensional imbalanced Fermi gas, i.e., a weakly coupled
array of one-dimensional (1D) attractive Fermi gases, gives
a better chance to observe a long-sought crystalline super-
fluid, known as the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [4–6].

The realization of 1D ultracold atomic gases [7,8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their
thermodynamics can be computed exactly, 1D ultracold
Fermi gases can also serve as a calibration reference sys-
tem to measure the thermodynamics of strongly interacting
Fermi gases in higher dimensions.

Contrary to the impression one might have, exact ‘‘solv-
ability’’ (integrability) does not guarantee that physi-
cal quantities of interest can be actually calculated. In
principle, the thermodynamic Bethe ansatz (TBA) [9]
gives exact results for thermodynamic properties.
However, it requires numerically solving an infinite num-
ber of coupled nonlinear integral equations to compare
with experiments [10]. On the other hand, quantum

Monte Carlo calculations are limited to small system sizes
[11].
In this Letter, we give a new formulation of the exact

thermodynamics of a 1D Fermi gas with contact attraction,
the Gaudin-Yang model [12,13], which is now accessible
in cold atom experiments [7,8]. Based on the analytical
analysis of the TBA equations, we derive a simple, com-
plete set of algebraic equations which yield all thermody-
namic quantities and show that they are asymptotically
exact and universal in the physically interesting regime.
Our approach can be applied to a wide range of Bethe
ansatz integrable many-body systems. As an application,
we propose a two-stage scheme to achieve accurate ther-
mometry for trapped 1D Fermi gases.
Model and strong coupling limit.—In the ongoing

experiments, for instance, at Rice University [8], a sys-
tem of parallel 1D gas ‘‘tubes’’ is prepared by loading al-
kali fermionic atoms (e.g., 6Li in hyperfine states
jF ¼ 1=2, mF ¼ �1=2i) in a square optical lattice. The
transverse dynamics is suppressed by deep lattice poten-
tials, and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12,13],
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The two hyperfine species with equal mass m are labeled
with spin up and down, respectively. g > 0 is the contact
attractive interaction. In general, the chemical potentials
for the spin up and down fermions are different, say
�" >�#. Following convention, we define the chemical

potential � ¼ ð�" þ�#Þ=2, the effective magnetic field
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h ¼ ð�" ��#Þ=2, the total density n ¼ n" þ n#, the mag-

netization M ¼ n" � n#, and the polarization P ¼ M=n.
There are two length scales in this problem: the 1D scat-
tering length a1 ¼ 2@2=ðmgÞ characterizing the interaction
strength g, and the interparticle spacing 1=n. Their ratio
defines the dimensionless interaction strength � ¼
2=ðna1Þ. In the experiments, the gas is usually dilute and
strongly interacting, namely a1 � 1=n, so � � 1. We will
focus on this strong coupling limit where the binding
energy "B ¼ @

2=ðma21Þ is much larger than the chemical
potentials.

The Gaudin-Yang model is exactly solvable by means of
the Bethe ansatz [12,13]. Its zero temperature phase dia-
gram has been worked out theoretically [14–16]. There are
three phases: the fully paired (BCS) phase which is a
quasicondensate with zero polarization, the fully polarized
(normal) phase with P ¼ 1, and the partially polarized (1D
FFLO) phase where 0<P< 1 and the pair correlation
function oscillates in space [5]. For given �, the FFLO
phase is separated from the BCS phase and the normal
phase by two quantum critical points at h ¼ hc1 and hc2,
respectively. An effective field theory of the 1D FFLO
phase, recently established by two of us, shows that it is
a novel type of two-component TLL, each gapless normal
mode being a hybridization of spin and charge [5].

Here, based on the exact Bethe ansatz solution, we
demonstrate that, in the low-energy limit the 1D FFLO is
equivalent to two coupled gases of spinless fermions.
Because of strong attraction, any minority (spin #) fermion
would like to pair up with a majority (spin ") fermion.
Then, roughly speaking, the FFLO phase can be viewed as
a mixture of tightly bound pairs (labeled by subscript b)
and unpaired leftover fermions (labeled by subscript u)
[14–16]. By a transmutation in statistics, the bosonic pair
degree of freedom is equivalent to a gas of spinless fermi-
ons, analogous to the well-known case of Tonks-Girardeau
gas of hard-core bosons. The two gases are coupled by
residue scattering, so the effective chemical potential of
each gas, �b (�u), depends on the Fermi pressure of the
other gas, pu (pb).

Exact thermodynamics.—Our analysis begins with rec-
ognizing the separation of energy scales in the strong
coupling limit. At very low temperatures, T � �u, �b

(Boltzmann’s constant kB ¼ 1), the thermodynamics of
the 1D FFLO phase is governed by the linearly dispersing
phonon modes, i.e., the long wavelength density fluctua-
tions of the two weakly coupled gases. Using the effective
field theory and the standard conformal mapping [17,18],
we find the low-temperature thermodynamic potential (per
unit length),

G FTðTÞ ¼ G0 � �
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The system has two gapless excitations, which are the long
wavelength density fluctuations (phonons) of the two
gases. Their group velocities are the respective Fermi
velocities, vb ¼ ð1� PÞ½1þ ð1þ 3PÞ=��vF=4 and vu ¼

P½1þ 4ð1� PÞ=��vF, with vF ¼ @n�=m [16]. At higher
temperatures, T ��b or �u, the particle and hole excita-
tions are no longer restricted near the Fermi surface. Their
dispersion undergoes a crossover from relativistic (linear in
k) to nonrelativistic (k2). In particular, this happens in the
vicinity of quantum critical points, where either �b or �u

becomes vanishingly small. The conformal invariance is
now violated due to the lack of Lorentz invariance. Conse-
quently, Eq. (2) becomes inadequate. Nevertheless, we
shall show that the system is still equivalent to two weakly
coupled gases despite the lack of conformal invariance.
At even higher temperature, T � "B, there is enough

thermal energy to break pairs. Similarly, for T � 2h, a
leftover fermion can flip its spin to be antiparallel to the
external field h due to thermal excitation. However, in this
Letter, we focus on the physically interesting regime of low
temperatures and strong coupling,

T � "B; 2h and � � 1: (3)

Our key observation is that the TBA equations can be
greatly simplified in the regime (3) due to the suppression
of spin fluctuations. Mathematically, the infinite set of
integral equations for spin rapidities is analytically trac-
table for strong attraction and high magnetic field. Their
overall effect can be absorbed into a renormalization of�u,
which becomes exponentially small at low T so the feed-
back effect to the spin rapidity solution can be safely
neglected. This leads to our central result—computing
the thermodynamics at finite temperatures only requires
solving the coupled algebraic equations:

�b ¼ �þ "B
2

� a1
4
pb � a1pu; (4)
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T3=2Li3=2ð�e2�b=TÞ; (6)

pu ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
m

2�@2

r
T3=2Li3=2ð�e�u=TÞ: (7)

Here, LisðxÞ is the standard polylogarithm function as a
result of the Fermi-Dirac integral. As we shall focus on the
regime (3), we can further neglect the exponentially small
contributions from the spin fluctuation. Hence, Eq. (5) is
replaced by

�u ¼ �þ h� a1pb: (8)

The thermodynamic potential (per unit length) G is then
given by G ¼ �p ¼ �ðpb þ puÞ, where p is the pressure.
From G, it is straightforward to find the density n ¼
�@G=@�, the magnetization M ¼ �@G=@h, the entropy
s ¼ �@G=@T, and the compressibility � ¼ @n=@�. For
these purposes, it is convenient to first take the correspond-
ing derivative of Eqs. (4)–(7), use @Lisð�exÞ=@x ¼
Lis�1ð�exÞ, and then solve the resulting linear equa-

tions. For example, defining �¼�ðmT=4�@2Þ1=2 �
Li1=2ð�e2�b=TÞ, � ¼ �ðmT=2�@2Þ1=2Li1=2ð�e�u=TÞ, and
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c ¼ 1þ a1�� 4a21��, we have

n¼ð4�þ��7a1��Þ=c; M¼�ð1�3a1�Þ=c: (9)

A detailed analysis of the TBA equations together with the
derivation of Eqs. (4)–(8) will be presented elsewhere.

For given (�, h, T), Eqs. (4)–(8) can be solved by simple
iteration by treating a1pb as being small compared to �b

and similarly a1pu as to �u. These equations free us from
the requirement of solving the full TBA equations, which is
a much harder task [10]. To test the accuracy of our new
approach, we examined the pressure p ¼ �G. In Fig. 1,
we compare results from Eqs. (4)–(8) (solid lines) and that
obtained by numerically solving the full TBA equations
(circles). We observe that indeed only at high temperature,
T � "B=2, the deviation from the exact result becomes
significant. Thus the validity of our new formulation is
established.

In the low-temperature limit T � �b, �u we calculate
the free energy using a Sommerfeld expansion based on
Eqs. (4) and (5). Indeed, we find the thermodynamic
potential reproduces the field theory result [Eq. (2)] and
the corresponding entropy (per unit length)

sFT ¼ �
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The entropy sðTÞ obtained from Eqs. (4)–(7) is shown in
Fig. 1 together with the low-energy effective field theory
result sFT. sðTÞ is clearly linear in T at low temperatures
and agrees well with sFT. The deviation from the linear T
dependence marks a universal crossover around T� from
relativistic to nonrelativistic dispersion for particle- and
holelike excitations. This leads to a minima in the magne-
tization as well as in the densities (not shown in Fig. 1) at
roughly the same temperature scale T�. Analogous cross-
over phenomena were discussed in the magnetization curve
for gapped spin-1 Heisenberg chains [19] and experimen-
tally observed in two-leg spin ladders [20].

The gross features of our findings are summarized in the
schematic ‘‘phase diagram’’ in Fig. 1. There is no phase
transition at finite temperature but only crossovers between
different regimes. At low temperatures, the BCS, normal,
and FFLO phase become the relativistic TLL of bound
pairs (TLLb), unpaired fermions (TLLu), and two-
component TLL (TLL2), respectively. The TLL descrip-
tion of the FFLO phase breaks down at crossover tempera-
ture T� where the dispersion of either bound pairs or
leftover fermions becomes nonrelativistic. In particular,
in the vicinity of the quantum critical points (hc1 and
hc2), the system crosses over to the ‘‘quantum critical
(QC) regime.’’ The other crossover (dash-dotted) lines
roughly correspond to the excitation gap for unpaired
fermions or bound pairs.
Application: two-stage thermometry.—Now we use

these formulas to study the strongly interacting imbalanced
Fermi gas inside a 1D harmonic trap of frequency !.
According to the local density approximation, the chemical
potential varies in space as �ðxÞ ¼ �0 � 1

2m!2x2, with

x ¼ 0 corresponding to the center of the trap, while the
magnetic field h stays constant. Thus, distinct zero tem-
perature phases are realized at different locations in the
trap, giving rise to particular spatial structures in the in situ
density images. A central challenge in interpreting the
density distribution data from experiments is how to de-
termine (T, �0, h), none of which seems to be accurately
measurable so far.
We use our results to propose a two-stage scheme to

accurately determine the parameters T, �0, and h from the
density profiles. Stage 1: estimate the values of these
parameters using the density profiles at the phase boundary
and at the edge of the gas cloud. Stage 2: using the
estimations as guess inputs, obtain (T, �0, h) to high
accuracy by a direct three-parameter fit of the whole den-
sity profile using Eq. (9). Previously, thermal tails at the
outer wing of the density cloud have been used to extract
the temperature of atomic gases in 3D traps based on the
observation that the gas is essentially noninteracting there
[21,22]. Here, by contrast, the outer wing may still interact
strongly (e.g., it might be a Tonks-Girardeau gas).
Moreover, our method utilizes densities not only at the
edge of the cloud, but also at the interface. We now
illustrate how to accomplish the goals of Stage 1 for the
cases of low and high total polarization.
For low polarization, the trap consists of a partially

polarized (FFLO) core and a fully paired (BCS) wing,
which at strong coupling is a Tonks-Girardeau gas.
Representative finite T density distributions are shown in
the left panel of Fig. 2. At T ¼ 0, the magnetization M
drops to zero at the FFLO-BCS phase boundary � ¼
�hþ n3�2a1=24 [16], while n" and n# vanish at � ¼
�"B=2. Finite temperature leads to thermal tails for all
three. The compressibility � is also shown in Fig. 2, which
develops a peak near the edge of the cloud. At T ¼ 0, �

diverges as �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ "B=2

p
as � approaches �"B=2. At
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FIG. 1 (color online). Left panel: Comparison of the tempera-
ture dependence of the pressure p obtained by numerically
solving the full TBA equations (circles) and simplified
Eqs. (4)–(7) (solid line). The entropy sðTÞ (green dashed line)
is linear in T at low temperatures, agreeing well with sFT (blue
dotted line) as predicted by the low-energy effective field
theory. � ¼ �0:95 and h ¼ 1:1. The energy and length units
are "B=2 and a1, respectively. Right panel: The schematic finite-
temperature ‘‘phase diagram’’ in the regime Eq. (3).
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finite temperature, this divergence is replaced by a peak
which is increasingly shifted away from � ¼ �"B=2 and
becomes less pronounced as the temperature is raised. In
the BCS region, pu is essentially zero, and the equation of
density [Eq. (9)] simplifies to n ¼ 4�=ð1þ a1�Þ. An ana-
lytic formula for � follows with its peak value given by the
simple expression

�pk ¼ 0:712

� ffiffiffiffiffiffiffiffi
2m

@
2T

s
� 1:29

�Ba1
þ . . .

�
: (11)

For strong interaction and low temperatures, the second
and higher order terms can be neglected. This formula
provides a powerful way to estimate T; namely, the peak
of compressibility is a sensitive thermometer. In fact, T,
�0, and h can be determined from experimentally mea-
sured nðxÞ andMðxÞ, in the following steps. (A) Obtain the
profile of compressibility from the density distribution in
the trap, �ðxÞ ¼ �ðm!2xÞ�1@n=@x. (B) Read off the po-
sition, xpk, and the magnitude of the compressibility peak,

�pk, from the plot �ðxÞ. (C) Calculate T from �pk, using

Eq. (11). (D) Estimate the value of the chemical potential
�0 at the center of the trap from �bðxpkÞ ¼ �0 �
m!2x2pk=2þ "B=2 ’ 0:554T. (E) Estimate h using h ¼
��0 þm!2x2M=2, where xM is read off from the magne-

tization profile MðxÞ at the value of MðxMÞ ¼
0:605

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT=2�@2

p
. Note that the thermal tail ofM is usually

very broad, because �u � �b is typically smaller than T
for low polarization.

For high polarization, a typical finite T density profile is
shown in the right panel of Fig. 2. At zero temperature,
the trap consists of a partially polarized (FFLO) core and
fully polarized normal (N) wing, with n# decaying to zero

at the FFLO-N phase boundary. Thermal fluctuations
smear the T ¼ 0 phase boundary, but the compressibility
develops a pronounced peak at x ¼ xp1 due to the rapid

decay of n# at low temperatures. In the normal region at

the outer wing, the fully polarized gas is free and we found

that the compressibility has the simple form � ¼

�ðm=2�@2TÞ1=2Li�1=2ð�e�u=TÞ. In this region, the ther-

mal tail of n" leads to a second peak in the compressibility

at x ¼ xp2. The two-peak structure of the compressibility

is clearly seen in Fig. 2. The first stage estimation of
(T;�0; h) in this case involves three steps. (A’) Measure
the value of compressibility, �p2, at the second (outer)

peak, and obtain the temperature from the relation

�p2 ¼ 0:126

ffiffiffiffiffiffiffiffi
2m

@
2T

s
: (12)

(B’) Estimate �0 from the first (inner) peak location xp1,

using �bðxp1Þ ¼ �0 � m!2x2p1=2 þ "B=2 ’ 0:554T.

(C’) Estimate h from the second peak location x ¼ xp2
using �uðxp2Þ ¼ �0 �m!2x2p2 þ h ¼ 1:11T.
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FIG. 2 (color online). The density n", n#, the magnetization
M ¼ n" � n#, and the compressibility � ¼ @n=@� versus the

local chemical potential � in a 1D trap. Left panel: low polar-
ization, h ¼ 0:9. Right panel: high polarization, h ¼ 1:1. The
temperature T ¼ 0:02 (units are the same as Fig. 1). � develops a
peak at the thermal tail of the gas or at the phase boundary. Its
peak value depends sensitively on temperature.
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