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Absence of a Direct Superfluid to Mott Insulator Transition in Disordered Bose Systems
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We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in
a bosonic system with generic, bounded disorder. We also prove the compressibility of the system on the
superfluid—insulator critical line and in its neighborhood. These conclusions follow from a general theo-
rem of inclusions, which states that for any transition in a disordered system, one can always find rare
regions of the competing phase on either side of the transition line. Quantum Monte Carlo simulations for
the disordered Bose-Hubbard model show an even stronger result, important for the nature of the Mott
insulator to Bose glass phase transition: the critical disorder bound A, corresponding to the onset of
disorder-induced superfluidity, satisfies the relation A, > E, ,, with E, , the half-width of the Mott gap in

the pure system.
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The interplay between disorder and interactions is one of
the most exciting and long-standing problems in con-
densed matter physics and has led to many controversial
theoretical and experimental results. Bosonic systems are
especially difficult to handle theoretically because the limit
of vanishing interactions is pathological: in the ground
state, all particles occupy the same lowest-energy localized
state. Hence, interactions and disorder are equally impor-
tant at the quantum phase transition between superfluid
(SF) and insulating (I) ground states. Relevant examples
include “He in porous media and aerogels [1], “He on
substrates [1,2], thin superconducting films [3], and
Josephson junction arrays [4].

The physics is further complicated when bosons are
subject to a periodic external potential and interactions
are strong enough to drive a commensurate system (with
particle number an integer multiple of the number of lattice
sites) to the insulating Mott phase (MI) even without dis-
order. A fundamental problem here is the role of an arbi-
trarily weak disorder in the vicinity of SF-MI quantum
critical point of the pure system.

Building on one-dimensional results by Giamarchi and
Schulz [5], Fisher et al. argued the existence of a Bose
glass phase (BG) in the disordered Bose-Hubbard
Hamiltonian in any dimension [6]: while the commensu-
rate Ml is gapped, the insulating BG remains compressible.
Ever since, the Bose-Hubbard model has received a lot of
theoretical attention although it remained beyond direct
experimental reach. This is changing with the experimental
demonstration of the SF-MI transition of ultracold atoms in
optical lattices [7] following the theoretical proposal of
Ref. [8]. At present, cold-atom systems offer unprece-
dented control over system properties and have been ex-
plicitly shown to be accurately described by the Bose-
Hubbard model. In particular, there is full agreement be-
tween the experimental data and Quantum Monte Carlo
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simulations, proving that the optical lattice system can be a
quantitatively reliable simulator [9]. Experiments have
recently advanced to the stage where disorder can be added
and controlled using speckle potentials [10-12].

Though the pure system is well understood, the proper-
ties of the disordered Bose-Hubbard model remain the
subject of debate, even at the qualitative level. The rele-
vance of arbitrarily weak disorder at the superfluid—insu-
lator quantum phase transition at integer filling factor is a
highly controversial issue [6,13—-32]. Fisher et al. [6] raised
the problem and argued that a direct SF-MI transition was
unlikely (see also Refs. [31,32]), though not fundamentally
impossible. Curiously, a large number of direct numerical
simulations [15,18,19,21,26,27] and some approximate
approaches [16,17,20,23,29,30] observed this unlikely
scenario.

However, all numerical simulations reporting a direct
SE-MI transition ignore a rigorous theorem [6,13] (to be
referred to as theorem I) stating that if the bound A on the
disorder strength is larger than the half-width of the energy
gap E,/, in the ideal Mott insulator, then the system is
inevitably compressible; i.e., the transition is to the BG
insulator and not the MI whenever

A.>Eyp. (1)

Intuitively, the condition A > E, ,(U) seems to be nec-
essary for the disorder to at least destroy the Mott gap,
putting aside the question of onset of superfluidity, which is
likely to require even stronger disorder. Therefore, it is
reasonable to conjecture that Eq. (1) holds for the Bose-
Hubbard model (see Refs. [31,32] for more details). This
condition was already shown to be necessary in 1D [22],
and there is compelling numerical evidence that it equally
holds in 2D [28]. Nevertheless, a rigorous proof valid for
any dimension has not been found. Moreover, it was re-
cently claimed [29] that the relevance of weak disorder
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depends on dimensionality and that in 3D, weak disorder
can be irrelevant.

In this Letter, we introduce and prove the theorem of
inclusions: In presence of generic, bounded disorder, there
exist rare but arbitrarily large regions of the competing
phase across a (generic) transition line. By generic disorder
we mean that any particular realization has a nonzero
probability density to occur in a finite volume. By generic
transition, we mean any first- or second-order phase tran-
sition with an onset that is sensitive to all disorder charac-
teristics [33]. This theorem immediately implies the
absence of a direct SF-MI quantum phase transition.

We also introduce theorem II—a system-specific en-
hanced version of the theorem of inclusions—which states
that the compressibility is nonzero on the superfluid—
insulator critical line and in its neighborhood for models
with disordered on-site potentials. Theorem II is not
based on and thus does not imply condition (1). To check
whether Eq. (1) holds in three dimensions as well as to
produce some quantitative benchmarks for future experi-
ments, we complement the theorem by first-principles
simulations of the disordered Bose-Hubbard model by
the worm algorithm [34]. For weak disorder, our results
are generic through standard long-wavelength universality
considerations.

The Hamiltonian of the Bosonic Hubbard model with
on-site disorder reads

H= —tZa}Laj + ani(ni —1)+ Z(s,- —whn;. (2)
@) i i

The subscripts label the sites of a (simple cubic) lattice, a?
is the boson creation operator, the symbol (i, j) denotes
nearest-neighboring sites, n; = ajai is the density opera-
tor. In what follows, we use the amplitude of the hopping
term ¢ as the unit of energy, U is the on-site pair interaction,
o is the chemical potential, and &; represents the random
disorder potential. Normally, one assumes—without loss
of generality—that there are no correlations between the
g;’s on different sites, and that their values are uniformly
distributed on the [—A, A] interval.

The proof of theorem I is based on the fact that in the
infinite system, one can always find arbitrarily large
“Lifshitz” regions where the chemical potential is nearly
homogeneously shifted downwards or upwards by A.
There is no energy gap for particle transfer between such
regions, and they can be doped with particles or holes [35].
Note also that theorem I immediately implies that the MI
phase does not exist in a system with unbounded disorder.

This proof gives a hint of a potential pitfall when one
tries to directly interpret numerical or experimental data on
finite system sizes. For A — 0, the distance between re-
gions contributing to a nonzero, but exponentially small,
compressibility is diverging exponentially. If disorder is
not very strong, a typical finite-size cluster is not supposed
to contain even a single rare region, and the system behav-
ior perfectly mimics a direct SF-MI transition. At the same

time, theorem I also provides a straightforward way out.
One just needs to compare the critical amplitude of the
disorder, A.(U), to E,,»(U): If condition (1) is satisfied,
then the transition is towards the Bose glass rather than the
Mott insulator, with the compressibility remaining finite at
the critical point. We now proceed to the proof of the
theorem of inclusions.

Proof of the theorem of inclusions.—The proof is
straightforward if reducing the disorder bound enhances
the superfluid phase (cf., e.g., Refs. [36,37]). In the oppo-
site case, let us introduce & denoting all microscopic
parameters, other than the bound A, that fix the shape
and correlations of the disorder distribution. In the parame-

ter space (U, A, 5), the critical hypersurface of the super-
fluid to insulator quantum phase transition is written as

A =AU, £). For simplicity, we keep U fixed, without
loss of generality. On physical grounds, AC(E) is a con-
tinuous function of its microscopic parameters, and we
assume a generic 5 which is not an extremum of A,.. We
do not have to require that AC(E) is analytic even though it
can be expected physically. Analyticity allows for explic-
itly expressing continuity through the expansion

A(&) = A(&) + A} — &) 3

for component i. Generic disorder implies that there exist
arbitrarily large regions in which the disorder realization

generated by ¢ can be considered with finite probability

density as a typical realization of a different set Eﬂum. Ina
sufficiently small neighborhood of the critical surface, we

can always find—by continuity of the function A(£), see,
e.g., Eq. (3)—parameters Eﬂuct such that all points A €
[A.(&), A (Enuer)] lie in a superfluid domain of the phase
diagram thanks to E being nonextremal. The deviation

from the critical surface, 8A = A (Exue) — A (&), can
be chosen small enough to guarantee that it can be com-

pensated by changing E to Eﬂuct. We conclude that within a
distance |8 A| from the critical surface, the system develops
arbitrarily large superfluid domains, which, by virtue of
standard Lifshitz tail arguments, implies the absence of the
gap (as in theorem I) and thus the absence of a direct SF-MI
transition.

Proof of theorem I1.—Close enough to the critical sur-
face we can choose a small finite value §A <0 since

fluctuations of {? can always be used to compensate for a
sufficiently small deviation from the superfluid domain. In
such a rare superfluid domain, the chemical potential (i.e.,
the domain-averaged value of the disorder) can be homo-
geneously shifted by a finite amount du ~ §A without
violating the global disorder bound. Since one can always
find rare superfluid regions large enough such that the
finite-size quantization of the energy is smaller than the
allowed variation 6 u, the density of states at the global
chemical potential is guaranteed to be finite; i.e., the
system is compressible across the SF-I transition. Note
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that our proof is not based on a specific form of the
Hamiltonian, and thus applies to all bosonic systems with
the on-site potential disorder featuring a SF-I quantum
phase transition.

Numerical analysis.—In our numerical study of model
(2), we consider ¢; uniformly distributed on the [—A, A]
interval, and choose the chemical potential in the middle of
the n =1 Mott lobe [38] to ensure that the system is
always in the (n) = 1 state. We employ the worm algo-
rithm, implemented in two independent ways [34,39]. The
finite-size scaling needed for the SF-I transition is based on
the square of the winding number of world lines (W?2),
related to the superfluid stiffness by A, = (W?)/TLd [40].
In Fig. 1, we show (W?) for different values of U/t and
system sizes at fixed disorder bound A = 5r where we
performed scaling with the temporal exponent 7 = 2 which
is our choice to reduce the numerical effort. The intersec-
tion points of the curves with different system sizes are
shown in the inset of Fig. 1. Extrapolation to the limit of
infinite system size using a (1/L)? scaling yields a critical
value (U/t). = 30.57(2). Although the exponents for cor-
rections to scaling are not known precisely, the critical
values (U/r), are determined very accurately; we have
repeated the simulations with Z = 1 (not shown) and found
the same value of (U/1),. within error bars, showing that the
choice of Z does not matter for the location of the critical
point. Indeed, winding numbers are exponentially sup-
pressed in the insulating phase, and thus any temporal
exponent is supposed to yield the same critical point in
the scaling limit. It is expected that close to the tip of the
Mott lobe, the influence of the U(1) symmetry is strong
enough to prevent one from directly (e.g., by using critical
exponents) distinguishing between different universality
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FIG. 1 (color online). Winding number squared as a function
of interaction strength (U/7) for A = 5¢ using a scaling analysis
with the temporal exponent 7 = 2, chosen for numerical conve-
nience (see text). The corresponding pairs of the linear system
size and inverse temperature are : L = 4 and B¢t = 1, L = 8 and
Bt =4, L =16 and Bt = 16, L = 24 and Bt = 36, and finally
L = 32 and Bt = 64. The values of the chemical potentials were
taken from Ref. [38]. Inset: The data points are the intersection
points of consecutive curves in the main figure. Extrapolating
with (1/L)?> to the thermodynamic limit yields (U/f). =
30.57 = 0.02 (see text).

classes from finite system simulations. For other disorder
bounds, we find (U/t), = 29.44(2) for A = 1.251,
(U/t), = 29.64(2) for A =2.5t, and (U/1), = 30.57(2)
for A = 10z. In the latter case, we directly observed that
at the transition point, the particle number fluctuations
diverge with the system size. Still, even for this relatively
strong disorder, finite compressibility can be revealed only
by going to very large samples, L = 32, meaning that the
compressibility of the Bose glass phase remains tiny and
quickly diminishes away from the critical point.

From our numerical data, we extract the phase diagram
of the commensurate system shown in Fig. 2. It is clear that
the critical disorder strength is always larger than half the
energy gap of the homogeneous model by a large margin.
Theorem I then immediately leads to the conclusion that
the SF-I transition is always to the compressible Bose glass
phase, in compliance with theorem II.

In summary, we have presented an analytic proof of the
absence of a direct SF-MI quantum phase transition in a
bosonic system with generic, bounded disorder. We have
shown that any bosonic system with on-site potential dis-
order is compressible at the superfluid—insulator critical
line and in its neighborhood. The quantitative analysis of
the Bose-Hubbard model in 3D, based on worm algorithm
Monte Carlo simulations, reveals additional details and
provides important numerical benchmarks for future ex-
periments. In the limit of weak disorder, the superfluid to
insulator transition takes place at the interaction strength
U> U(CO), with UEO) being the Mott transition point of the
pure system. The overall picture is that disorder first de-
stroys the Mott insulator, converting it into a compressible
Bose glass, which is guaranteed to happen (and presum-
ably happens exactly at the condition) when the bound on
the disorder strength reaches the value A = E, ,(U), with
E,»(U) the half-width of the Mott gap in the pure system.
The critical bound on the disorder, A .(U), corresponding
to the onset of disorder-stimulated superfluidity, satisfies
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FIG. 2 (color online). Phase diagram of the 3D Bose-Hubbard
model with disorder. The E,,(U) curve is taken from Ref. [38]
and is shown here to demonstrate that the condition A_.(U) >
E, /2(U ) is definitely satisfied. It also marks the BG-MI transition

boundary according to the conjecture. Error bars are shown, but
are smaller than point sizes.
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relation (1), which guarantees the above-mentioned pic-
ture. Thus, disorder is relevant to the SF-I criticality in all
experimentally accessible dimensions.

The theorem of inclusions is readily generalized to an
arbitrary transition in a disordered system between phases
A and B and states that one can always find arbitrarily large
inclusions of the competing phase on either side of the
transition line. The SF-I case with diagonal disorder con-
sidered here is one example; the generic superfluid—Mott
(or checkerboard) -glass transition in a particle-hole sym-
metric system with off-diagonal disorder—is another one
(cf. [28,41]). Whether rare regions are relevant to the
nature of phases A or B remains model specific and is
not part of the theorem.
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OLE program, the Swiss National Science Foundation, and
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