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Genomic expression depends critically on both the ability of regulatory proteins to locate specific target

sites on DNAwithin seconds and on the formation of long-lived (many minutes) complexes between these

proteins and the DNA. Equilibrium experiments show that indeed regulatory proteins bind tightly to their

target site. However, they also find strong binding to other nonspecific sites which act as traps that can

dramatically increase the time needed to locate the target. This gives rise to a conflict between the speed

and stability requirements. Here we suggest a simple mechanism which can resolve this long-standing

paradox.
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It is commonly believed that three-dimensional diffu-
sion is too slow for proteins to locate their specific target on
a DNA molecule for cells to function properly. To resolve
this issue Berg and von Hippel suggested, in a series of
seminal papers [1,2], that combining periods of one-
dimensional diffusion along the DNA (sliding) with peri-
ods of three-dimensional diffusion off the DNA (jumping)
can speed up the search time by several orders of magni-
tude. Since then, sliding (or equivalently binding of pro-
teins to nonspecific DNA sequences) has been observed in
many experiments [3–5] and is now believed to be a
common mechanism [6–11]. On the other hand, as pointed
out already in [12], experimental and theoretical works
have shown that the binding energies of a protein to differ-
ent DNA sequences are very large—a direct consequence
of the required stability of the protein with its target site.
The binding energies can be well fitted by a Gaussian with
the strongest binding energies of the order of �30kBT and
a standard deviation of the order of 5kBT [13]. This casts a
cloud on the simple facilitated diffusion picture of Berg
and von Hippel—the binding energy distribution suggests
an unacceptably slow search with very slow sliding and
deep traps [10]. This unresolved conflict is called the
speed-stability paradox [2].

Here, motivated by direct experimental observations
[14–17] and theoretical work by Slutsky and Mirny [10]
and Hu et al. [18], we consider a model in which the
protein, when bound to the DNA, can switch between
two conformations separated by a free energy barrier. In
one, termed the search state, the protein is loosely bound to
the DNA and can slide along it. In the second, recognition
mode, it is trapped in a deep energy well. Note that
equilibrium measurements of binding energies to the
DNA are controlled by the recognition state.

In this Letter we argue that, due to the occurrence of
several time scales in the search process, the widely used
definition of the reaction rate of a single protein as the
inverse of the average search time tav [19] is generally
irrelevant as a measure of the efficiency of target location

on DNA. When np proteins are searching for the target, the

relevant quantity is the probabilityRnpðtÞ for a reaction to
occur before time t. We show below that RnpðtÞ can reach

values close to 1 in a time scale t
typ
np ðtÞ which can be orders

of magnitude smaller than the value tav=np expected from

the usual approach.
Our analysis has several important merits. First, it re-

ports a fast search time despite a very strong binding of the
protein in the recognition state to any site on the DNA. We
suggest that the measured binding energies of proteins to
the DNA are irrelevant to the kinetics of the search process;
the relevant quantities are transition rates (specified be-
low). Second, it shows that in the realistic case of generic
disorder in the barrier height the search can be very effec-
tive even if the target site is not designed. If experimentally
verified, the proposed mechanism will resolve the speed-
stability paradox.
The model consists of np proteins which can each be in

three states: (i) an unbound state u, in which it performs
three-dimensional diffusion (jumping), (ii) a search state s,
where it is weakly bound to the DNA, performing one-
dimensional diffusion (sliding), and (iii) a recognition state
r, where it is tightly bound to the DNA. We assume, for
simplicity, that in the recognition state the protein is
trapped in a deep energy well (as justified by the experi-
mentally measured strong binding energies) and is unable
to move [10]. The transition rates, �i

s, �
i
r, �b, and �u,

between the different states are defined in Fig. 1. To model
sliding, in the s state the protein can movewith rate �0=2 to
neighboring sites on the DNA. Note that the rates �i

r and �
i
s

are expected in general to depend on the location i ¼
1; . . . ; N along the DNA. In principle �0 and �u also
have a dependence on i. As justified later this will have a
weaker effect on our results and we omit it for clarity. We
consider a DNA molecule of N sites, with a centered target
site (labeled 0), and finally assume that after a jump the
protein relocates to a random position on the DNA due to
its packed conformation [20]. A similar model was pre-

PRL 103, 138102 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

0031-9007=09=103(13)=138102(4) 138102-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.138102


viously studied in [18] in the case of site independent
transition rates. There, however, it was assumed that the
protein equilibrates with DNA segments far from the target
site. As we show below, this assumption can fail.

Nondisordered case.—To gain an understanding of the

difference between the two time scales t
typ
np and tav=np we

first consider np ¼ 1 in a simplified model where �i
r and �

i
s

are independent of i except at the target site T where

�T
r ¼ 1 and �T

s ¼ 0. The disorder of the DNA sequence
is neglected and the target is designed such that a reaction
takes place at the first visit of the target site. These as-
sumptions will be relaxed later. As stated above, we are
interested in the probability RðtÞ ¼ R

t
0 Pðt0Þdt0 that a re-

action occurs before time t, where PðtÞ is the distribution of
the first-passage time (FPT) [21] to the target (we drop the
subscript when np ¼ 1).

The Laplace transform, ~PðsÞ ¼ R1
0 e�stPðtÞdt, of PðtÞ,

can be obtained exactly. Consider the joint probability
density for a protein to find the target at time t ¼ ts þ tr
starting from a location x0 at t ¼ 0 before unbinding from
DNA. Here ts is the total time spent in the s state and tr is
the total time spent in the r state. If exactly n transitions
occurred from the s state to the r state, this is given by

Pnðts; trjx0Þ ¼ �sP ðn� 1; �s; trÞP ðn; �r; tsÞjðtsjx0Þe��uts ;

(1)

where P ðn;�; tÞ ¼ ð�tÞne��t=n! is the Poisson distribu-
tion [with the convention P ð�1; �; tÞ � �ðtÞ=�], and
jðtjx0Þ is the FPT density at the target x ¼ 0 for a usual
random walk starting from x0 [22]. The FPT density before
unbinding starting from x0 then reads:

Jðtjx0Þ¼
X1

n¼0

Z 1

0

Z 1

0
dtsdtr�ðtsþ tr� tÞPnðts;trjx0Þ: (2)

After Laplace transform and using ~P ðn;�; sÞ ¼ �n=ðsþ
�Þnþ1, we find ~Jðsjx0Þ ¼ ~jðuðsÞjx0Þ with uðsÞ ¼

sðsþ�rþ�sþ�uÞþ�s�u

sþ�s
. Averaging over x0 and following

[6,23], we then obtain

~PðsÞ ¼ ~jðuðsÞÞ
�
1� �b�u

sþ �b

1� ~jðuðsÞÞ
uðsÞ

��1
; (3)

where ~jðsÞ � h~jðsjxÞix � 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e�s=�0Þ=ð1� e�s=�0Þ

q
for

large N [22].
An analysis of the pole structure of Eq. (3) shows that in

the regime �s � �r � �u; �b; �0 (with �u, �b, �0 of
comparable order) the reaction probability simplifies to

R ðtÞ ’ 1� qe�t=�1 � ð1� qÞe�t=�2 ; (4)

with q ¼ ½1þ �r=ð�u�=NÞ��1, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cothð�u=2�0Þ

p
, �1 ¼

ð�b þ �uÞ=½�bð�r þ ��u=NÞ� and �2 ¼ ð�r þ
��u=NÞ=ð�s��u=NÞ. The short time scale �1 characterizes
searches where the protein never enters the r state and is
therefore independent of the binding energy Er (and hence
of �s). The time scale �2 characterizes searches where the
protein enters the r state, and is therefore much larger than
�1 in the case of strong binding (�s small). In turn, q is the
probability of an event where the target is found without
falling into the trap.
Expression (4) enables an explicit determination of

tave ¼ q�1 þ ð1� qÞ�2 and ttyp, which can be defined,
for example, through

Z 1

0
e�t=ttypPðtÞdt ¼ ~Pð1=ttypÞ ¼ 1=2: (5)

We stress that experimentally the relevant time, where
almost all search processes end, is ttyp and not tav. In the
regime �r � �u�=N, one has ttyp ’ tav ’ �2. A difference
between ttyp and tav emerges as �r is decreased, and in the
limit �r � �u�=N we find that ttyp ’ �1=ð2q� 1Þ (with
q ’ 1) is independent of �s. This shows that for DNA
lengths N � �u�=�r the typical search time is signifi-
cantly smaller than the average even in the presence of
deep traps (�s small). This is a direct result of the two time
scales, �1 and �2.
The results, compared with numerics which were per-

formed using a standard continuous time Gillespie algo-
rithm, are shown in Fig. 2. We use realistic ranges of
parameters (from available experimental data summarized
in [24]) which are specified in the caption. We assume the
barrier height for different DNA sequences to be of the
same order of magnitude as the experimentally measured
binding energies [13]. This conforms well with measure-
ments of transition rates of about 0:1 s�1 for a papilloma-
virus E2 protein-DNA complex, which gives barriers of the
order of 20–30kBT [14]. It is found that RðtÞ reaches a
plateau close to 1 on a typical time scale ttyp which, for
N ¼ 106, is much shorter than tav.
This interesting regime where ttyp � tav requires a

rather large barrier between the s and r state in the case
of long DNA molecules (namely, �r � �u�=N). Although
this condition may not hold for all proteins, we now argue
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FIG. 1 (color online). An illustration of the model. (a) A time
sequence of a protein sliding in the s mode [light gray (green)
circle], diffusing off the DNA [dark gray (blue) circle], and
entering the target site in the r mode (red oval). (b) A protein
finding the target after entering the r state. (c) An illustration of
the rates and the energy landscape which governs them at each
location, i ¼ 1; . . . ; N, along the DNA. Here �i

r / e�ðEi
b
�Ei

sÞ=kBT ,
�i
s / e�ðEi

b
�Ei

rÞ=kBT , and �u / e�Ei
s=kBT , while �b depends on

details of the three-dimensional diffusion process.

PRL 103, 138102 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

138102-2



that it can, to a large extent, be relaxed when np proteins

are searching for the target simultaneously. In this case,
even when for a single protein tav ’ ttyp the typical search

time t
typ
np of np proteins can be significantly shorter than

tav=np even for relatively small values np � 10. Here,

again, tav is the average search time of a single protein

and t
typ
np is defined as in Eq. (5) where for np proteins the

first-passage distribution PnpðtÞ is deduced from the cumu-

lative distribution

R npðtÞ ¼ 1� ½1�RðtÞ�np : (6)

In Fig. 3 we show the results of RnpðtÞ for np ¼ 10. Note

that, as claimed above, t
typ
np � tav=np, whereas t

typ is close

to tav for one protein. This can be understood as follows.
Using Eq. (4) in Eq. (6), it is obvious that when �2 � �1,
the decay of RnpðtÞ is dominated by �1 as long as ð1�
qÞnp � 1. In essence, since only one protein needs to find
the target, the probability of a catastrophic event where the
search time is of the order of �2 is pcat ¼ ð1� qÞnp , which
decays exponentially fast with np. For large enough values

of np the short time scale �1 controls the behavior of

RnpðtÞ, even if it is insignificant for the one protein search

time. The typical search time is t
typ
np ¼ �1=m, wherem is of

the order of np, and is therefore again widely independent

of the binding energy of the r mode. This makes fast
searches possible even in the presence of deep traps—
enabling both speed and stability.

Disordered case.—We now argue that this mechanism of
fast search can still be at play when the binding energy of
the protein to the DNA is strongly disordered, as observed
in experiments. To account for this we consider the case
where the barrier height is drawn from a Gaussian distri-

bution: pðEi
bÞ ¼ e�ðEi

b
�E0Þ2=2�2

=
ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

p
. Importantly, in

the presence of disorder we can propose an intrinsic defi-
nition of the target as the site with the lowest barrier with
no specifically designed properties. Indeed, our previous

assumption �T
r ¼ 1 at the target site and �i

r small every-
where else is a rather strong demand. Since the target
sequence is of the order of 10 base pairs, many sequences
with similar properties are likely to exist, unless the DNA
sequence is tailored.
To analyze this model we combine numerics with a

mean-field analysis. For simplicity, we consider the ex-
treme case where all recognition sites are infinitely long-
lived �s ¼ 0, which obviously fulfills the stability require-
ment. Note that tav is then infinite. In real systems one
expects this transition rate to also be disordered. In par-
ticular, for sites very different from the target site the
recognition state may not be present at all. Since such
features would only make the search quicker, our model
gives an overestimate of the search time.
Within the mean-field approach we replace the different

quantities by their disorder average and account for the
barrier at the target site. We first compute the disorder
averaged probability of crossing the barrier at the target
at each visit. Knowing the distribution of the minimum of

the barrier [25], this is given by p1 ¼ R1
�1 dE½e�E=kBT=

ð1 þ �u=�0 þ e�E=kBTÞ�ðd=dEÞf12 erfc½ðE � E0Þ=
ffiffiffi
2

p
��gN .

Here we set the time scale of the activation process across
the barrier to be �0. Note that even in the case where p1 is
small, the search is still controlled by transport since it is
governed by the statistics of return times to the target. We
finally assume that the expression for uðsÞ of the non-

disordered model holds with �r replaced by ��r ¼
�0

R1
�1 e�E=kBTðe�ðE�E0Þ2=2�2

=
ffiffiffiffiffiffiffi
2�

p
�ÞdE and ~j replaced

by
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FIG. 3 (color online). A plot of Rnp ðtÞ for np ¼ 1 (empty
circles) and np ¼ 10 (filled squares). Here N ¼ 106, �u ¼
10�4�0, �b ¼ 0:1�0, �r ¼ 10�7�0, and �s ¼ 10�9�0 (see
[24]). These correspond to energies, measured relative to the
unbound state, of Es ¼ �9:2kBT, Eb ¼ 6:9kBT, and Er ¼
�13:8kBT. Lines correspond to Eq. (4) with calculated values
of �1, �2, and q. Note that here �u is different from Fig. 2.
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FIG. 2 (color online). A plot of RðtÞ for N ¼ 106 (empty
circles) and N ¼ 108 (filled squares). Lines correspond to
Eq. (4), with �1, �2, and q derived analytically. Here �u ¼
10�2�0, �b ¼ 0:1�0, �r ¼ 10�7�0, and �s ¼ 10�9�0, in agree-
ment with [24]. These correspond to energies, measured relative
to the energy of the unbound state, of Es ¼ �4:6kBT, Eb ¼
11:5kBT, and Er ¼ �9:2kBT. Experiments suggest �0 ’
106 s�1 for the Lac repressor [5].
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~j p1
¼ p1

~jðzÞ
1� ð1� p1Þ~j0ðzÞ

; (7)

where ~j0ðsÞ is the generating function of the first return
time to site 0 [22].

First, we show that the two scales scenario described
above still holds. Indeed, Fig. 4(a) shows that RðtÞ is well
fitted by Eq. (4) for realistic values of parameters. This
implies that for np large enough the only relevant time

scale is �1, and the typical search time again takes the form

ttypnp ’ �1=m with m of the order of np. This enables a fast

search even in the presence of infinitely deep traps.

The regime of a fast search with t
typ
np independent of the

trap depth Er also requires, as above, a small pcat. We now
show that this condition holds in a wide range of disorder
parameters. To illustrate this, the dependence (holding all

other variables constant) of pcat and ttypnp on �, obtained

from numerics and the mean-field treatment, is shown in
Figs. 4(b) and 4(c) for realistic values of parameters.
Notably, the value of pcat can be minimized as a function
of �. This reflects the fact that for small values of � the
DNA sequence has to be scanned many times before the
target is entered in the r mode. Increasing � lowers the
barrier at the target and therefore reduces the number of
scans needed, which diminishes pcat. For larger � the
chance of falling into a trap increases due to lower second-
ary minima of the barrier, which leads to an increase of
pcat. As expected, pcat is dramatically decreased when np is

increased, even by a few units, and can remain small for a
wide range of values of �. For larger �, pcat increases and

t
typ
np rises quickly as it starts to depend on �2.

Most important, as advertised above, these results show

that small values of ttypnp and pcat can be obtained with

realistic values of the parameters (see Fig. 4). Reasonable
search times (in the range of seconds) are obtained for a
large range of � as long as np is of the order of 10 or more

proteins, even in the extreme case of infinitely deep traps
suggesting a possible resolution of the speed and stability
requirements.
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FIG. 4 (color online). Disordered case for np ¼ 1 (empty
circles) and np ¼ 10 (filled squares), where N ¼ 106, �u ¼
10�2�0 (Es ¼ �4:6kBT), �b ¼ 0:1�0, and E0 ¼ 25:4kBT.
(a) Plot of Rnp ðtÞ for � ¼ 5:3kBT. The lines were obtained by

fitting the form 1� ½qe�t=�1 þ ð1� qÞ�np to the numerical
simulations with q ¼ 0:2817, �0�1 ¼ 1:7	 107, and �2 ¼ 1.
These are close to the mean-field prediction q ¼ 0:2827, �0�1 ¼
1:1	 107. The average height of the barrier at the target site is
then 6:25kBT, which corresponds to a transition rate of 2	
103 s�1. (b) pcat as a function of � for np ¼ 1 and np ¼ 10.

(c) ttyp for np ¼ 10 and �1 are plotted as a function of �. Using

�0 ¼ 106 s�1 [5] for np ¼ 10 at the minimal pcat we find ttyp ’
10 s. Note that by moderate changes in E0 similar results can be
obtained for longer DNA sequences.
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