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The sigmoidal tuning curve that maximizes the mutual information for a Poisson neuron, or population

of Poisson neurons, is obtained. The optimal tuning curve is found to have a discrete structure that results

in a quantization of the input signal. The number of quantization levels undergoes a hierarchy of phase

transitions as the length of the coding window is varied. We postulate, using the mammalian auditory

system as an example, that the presence of a subpopulation structure within a neural population is

consistent with an optimal neural code.

DOI: 10.1103/PhysRevLett.103.138101 PACS numbers: 87.19.ls, 87.19.ll, 87.19.lo, 87.19.lt

Neuronal responses often appear noisy in the sense that
repeated presentation of identical stimuli result in variable
action potential timings. This variability is often closely
modeled by Poisson statistics [1,2], and, hence, the Poisson
neuron has become an archetypal model for neural rate
coding. In this model the input signal x is coded in the
mean firing rate � ¼ gðxÞ, where gðxÞ is known as the
tuning curve (or the stimulus-response curve, gain func-
tion, or rate-level function). While several definitions of
rate exist [3], following related studies [4–6], here we
assume the observable output when the mean rate is � is
the number of spikes k that occur in a time window T. The
input x is assumed to be a continuous variable, such as an
external sensory stimulus.

Despite the popularity of the Poisson neural model,
remarkably, the gðxÞ that maximizes Shannon mutual in-
formation [7,8] has not been obtained, except in the limit
T ! 1 [4,9]. Arguably, this limit is not relevant to a large
number of biological sensory systems where it is well
established that behavioral responses occur on time scales
that imply short coding windows [2]. In this Letter, we
obtain the optimal tuning curve for finite T.

Our main finding is that the optimal tuning curve is
discrete, in the sense that many stimuli values result in
the same mean firing rate. The number of discrete levelsM
increases as T increases. This result means that when
mutual information is to be maximized, signal quantization
is an emergent feature of the optimal coding scheme and is
superior to analog coding. We also demonstrate that this
means neural subpopulations might be necessary to opti-
mize an overall population.

This result of optimalM-ary coding differs significantly
from Refs. [5,6], which predict a single phase transition
from binary to continuous tuning curves—i.e., from dis-
crete to analog coding. This difference is because we max-
imize mutual information, while Refs. [5,6] minimize
mean square error (MSE). We consider mutual informa-
tion, rather than other metrics such as MSE [5] and Fisher
information [10], because it does not rely on assumptions

about how a neuron’s response may be ‘‘decoded’’ [8].
Furthermore, mutual information is intimately linked to
MSE via rate-distortion theory [11].
To derive the optimal tuning curve, we make use of a

known result from the photonics literature. The properties
of Poisson neurons are very similar to those of direct
detection photon channels, which operate by modulating
the intensity of a photon emitting source. Both can be
modeled as Poisson point processes [12].
A classical problem in communication theory is that of

finding the signal distribution that maximizes the mutual
information for a channel. The resultant optimal code is
said to achieve channel capacity [7]. The optimal input
distribution for the direct detection photon channel has
been proven to be discrete [13,14]. Indeed, the discreteness
of optimal input distributions is the norm, regardless of
whether the output distribution is discrete or continuous
[15,16]. Consequently, although we have assumed a rate
code based on the discrete random variable defined by
counting spikes (alternatively, we could have defined it in
terms of a continuous random variable based on interspike
intervals), the central result in this paper is not dependent
on the definition of rate but is rather a property of the
‘‘channel noise’’—see [16,17].
The discreteness of the optimal signal for the optical

Poisson channel implies that the optimal stimulus for a
Poisson neural system is also discrete. However, this is not
physically realistic, as the distribution of an external stimu-
lus is not controlled by a neural system and is likely to be
continuous, e.g., speech or natural sound statistics. Instead,
it is plausible that a neural system may have been opti-
mized by evolution so that the tuning curve discretizes its
input to match the theoretical optimal source distribution.
The mutual information [7,8] between the (continuous)

input random variable x 2 X ¼ ½xmin; xmax� and the (dis-
crete) output random variable k is

Iðx; kÞ ¼ X1

k¼0

Z
x2X

dxPxðxÞP½kjx�log2 P½kjx�PkðkÞ ; (1)
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where PkðkÞ ¼
R
x2X dxPxðxÞP½kjx�. Here PxðxÞ, PkðkÞ,

and P½kjx� are the distributions of the stimulus, the re-
sponse, and the conditional distribution, respectively.

For Poisson statistics, the conditional distribution is

Q½kj�� ¼ ½T��k
k!

expð�T�Þ; k ¼ 0; . . . ;1: (2)

The mean firing rate is restricted to � 2 ½�min; �max�, where
the upper bound �max is due to physiological limits (meta-
bolic and refractory), and we set �min ¼ 0. Later, we use
the notation N ¼ T�max to denote the maximum mean
spike count.

The conversion of a signal follows the Markov chain
x ! � ! k. Note that k is observable from a short duration
T, while � is not. We refer to x ! � and � ! k as separate
‘‘subchannels.’’ To find the optimal channel, we maximize
the mutual information by variation of the distribution
P�ð�Þ for given PxðxÞ and Q½kj��. Since the distribution
of � is P�ð�Þ ¼

R
x2X dxPxðxÞ�ð�� gðxÞÞ, where �ð. . .Þ is

the Dirac delta function, variation of P�ð�Þmeans variation
of the tuning curve gðxÞ.

We now present the following theorem: The mutual
information in the neural channel x ! � ! k is maximized
when the distribution P�ð�Þ is discrete.

Remark.—The neural channel forms a Markov chain for
which the following equations are valid:

Pðx; �; kÞ ¼ Pkj�½kj��P½�jx�PxðxÞ; (3)

Pðx; �; kÞ ¼ Pkj�½xj��P½�jk�PkðkÞ: (4)

We assume Pkj�;x½kj�; x� ¼ Pkj�½kj�� and Pxj�;k½xj�; k� ¼
Pxj�½xj�� due to the definitions of the subchannels as � ¼
gðxÞ, i.e., Pxj�½xj�� ¼ �ð�� gðxÞÞ, where gðxÞ is a single-
branched function, and Pkj�½kj�� ¼ Q½kj��.

Proof.—First we prove that Iðx; kÞ ¼ Ið�; kÞ. From
Theorem 5.2.8 of [7], the mutual information between the
variable k and the pair ð�; xÞ can be written in two ways:

Iðk; ð�; xÞÞ ¼ Iðk;�Þ þ Iðk; xj�Þ; (5)

Iðk; ð�; xÞÞ ¼ Iðk; xÞ þ Iðk;�jxÞ; (6)

where the conditional mutual information expressions are

Iðk; xj�Þ ¼
ZZ

x2X
�2M

dxd�
X1

k¼0

Pðx; �; kÞlog2 Pxj�;k½xj�; k�
Pxj�½xj�� ;

Iðk;�jxÞ ¼
ZZ

x2X
�2M

dxd�
X1

k¼0

Pðx; �; kÞlog2 P�jx;k½�jx; k�
P�jx½�jx� :

Since Pxj�;k½xj�; k� ¼ Pxj�½xj��, the conditional mutual

information Iðk; xj�Þ is zero. Next, note that the variable
� directly depends on the random variable x, � ¼ gðxÞ and
hence P�jx;k½�jx; k� ¼ P�jx½�jx�, and the conditional mu-

tual information Iðk;�jxÞ is also zero. Consequently, we
are left with the following two equations: Iðk; ð�; xÞÞ ¼
Iðk;�Þ and Iðk; ð�; xÞÞ ¼ Iðk; xÞ. This means that Iðk; xÞ ¼

Iðk;�Þ, and the mutual information in the neural channel is
equal to the mutual information of the noisy subchannel.
To proceed, we now consider the noisy neural subchan-

nel � ���!Q½kj��
k and use a theorem from Ref. [14] for a ‘‘direct

detection’’ photon channel, where the input is a continuous
time inhomogeneous Poisson rate �ðtÞ. Because of ‘‘band-
width constraints,’’ �ðtÞ � A is constant during equal du-
rations �. The output is the sequence of photon arrival
times within �, ftigyi¼1. A key result in Ref. [14], Sec. 3, is

that this channel is mathematically equivalent to one where
the output is the photon count y within�, and the input is a
time-independent variable �. The latter channel’s distribu-
tion is given by (2), except instead of counting y photons in
response to � � A during �, the neural Poisson channel
output is the spike count k in response to � � �max during
T. Thus, Ið�ðtÞ; ftigyi¼1Þ ¼ Ið�; yÞ � Ið�; kÞ ¼ Iðk; xÞ, and
since Ref. [14], Theorem 1, states that the optimal distri-
bution of � is discrete, the mutual information in the neural
channel is also maximized when P�ð�Þ is discrete. j
The proven theorem does not provide any means for

finding a closed-form solution for the optimal discrete
distribution P�ð�Þ. However, its utility is that it allows a
reduction in the set of functions we need to consider when
optimizing P�ð�Þ and/or the tuning curve gðxÞ.
Without loss of generality, we can now introduce the

following simplifying restriction for the function gðxÞ. Let
gðxÞ be a nondecreasing multistep function

gðxÞ ¼ XM�1

i¼0

�i�ðx� �iÞ; (7)

whereM is the number of levels and�ð. . .Þ is the Heaviside
step function. Letting �i ¼

P
i
n¼0 �n, we have �iþ1 as the

value of x at which gðxÞ jumps from value�i to�iþ1. Since
we assume xmin ¼ �0 < �1 < �2 < � � �< �M�1 < �M ¼
xmax, the optimal gðxÞ is unique. This latter requirement
means that we consider only the case of monotonically
nondecreasing (sigmoidal) tuning curves. Without this re-
striction, it is not possible to find a unique solution, and
hence this study does not generalize to nonmonotonic
tuning curves. This is not highly restrictive, since sigmoi-
dal tuning curves are widely observed in many sensory
modalities [18]. The mutual information of the neural
channel can be written as

Iðx; kÞ ¼ X1

k¼0

XM�1

i¼0

�iQ½kj�i�log2 Q½kj�i�P
M�1
n¼0 �nQ½kj�n�

; (8)

where �i ¼
R�iþ1

�i
dxPxðxÞ. The optimal function gðxÞ can-

not be easily found in an analytical form using variational
principles, because it leads to a set of transcendental equa-
tions. Therefore, we use stochastic gradient descent meth-
ods to solve for the optimal P�ð�Þ. For alternative methods,
see, e.g., [19].
Figure 1 shows the main results of our study. The upper

insets display the normalized optimal tuning curve fðxÞ �
gðxÞ=N for four different values of maximum mean spike
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count N. Figure 2 shows the overall population normalized
firing rates 	i � �i=N, as well as the mutual information
corresponding to the optimal solution. Note that Iðx; kÞ in
Eq. (8) is parametrized entirely by the set �i, �i, i ¼
0; . . . ;M� 1, and it is these parameters that are optimized.
The set of �i’s required for the optimal gðxÞ can be ob-
tained for any given PxðxÞ from the �i. Hence, in Fig. 1,
without loss of generality we have assumed that the stimu-
lus is uniformly distributed on ½0; 1�. Similarly, the �i’s
follow from �i.

For small N < 3, only two firing rates are observed: For
values of x < �1, fðxÞ ¼ 0 (the absence of firing), while for
larger values of x, fðxÞ ¼ 1 (firing at the maximum allow-
able spike rate). This form of optimal binary coding has
been predicted previously for Poisson neurons using esti-
mation theory [5,6]. It also agrees with the well known
result that a binary source maximizes information through
a Poisson channel when the input can switch instantane-
ously between states [13,20].

As N is increased, the number of steps in the optimal
tuning curve increases; e.g., for N ¼ 7, two steps are
observed giving rise to a ternary coding scheme, and for
N ¼ 15, three steps are observed giving a 4-ary (quater-
nary) coding. In general, an M-ary code will be optimal
with increasing N. As N ! 1 we predict that the optimal
tuning curve will converge to a continuous function [4,9].
Figure 1 shows how the partition boundaries �i vary asN is
increased; new boundaries can be seen to emerge via phase
transitions. These appear to be continuous and hence are
akin to second order phase transitions of the optimal tuning
curve.

Our findings of an optimalM-ary code are in agreement
with isomorphic results on the information maximizing
source distribution for Poisson direct detection photon

channels with imposed bandwidth constraints [14]. In our
context, a bandwidth constraint is equivalent to allowing
N > 1. We further note that the bifurcation structure in
Fig. 1 is qualitatively similar to information optimization
results in Refs. [11,21] for systems that are quite different
from Poisson neurons.
One way of interpreting our results is that the steps in the

optimal fðxÞ partition the stimulus into regions associated
with neural subpopulations. For example, suppose an over-
all population consists of K neurons and M� 1 subpopu-
lations, within which each neuron is identical and binary
with rates 0 and �i. Since the neurons are Poisson, the sum
of the K individual normalized firing rates is equal to fðxÞ.
For overall binary coding, the only way of achieving fðxÞ
would be a single subpopulation, where each neuron is
identical and able to fire at two rates: 	0=K ¼ 0 and
	1=K ¼ 1

K , where rate 	1=K is activated when x � �1.

For the ternary case, there would be two subpopulations, of
sizes J and K � J, with individual normalized firing rates
	1=J and ð1�	1Þ=ðK � JÞ, so that the overall population
has 3 rates: 0, 	1, and 1, as shown in Fig. 2. The first
subpopulation would be activated only when x > �1 and
the second when x > �2.
We can estimate the sizes of the subpopulations in our

example as follows. Since the sizes of the subpopulations
are proportional to the integrated firing rates, the neurons
for ternary coding are distributed with probabilities P1 ¼
	1 ¼ �1=N and P2 ¼ 1�	1, respectively. The quater-
nary coding scheme for N ¼ 15 has three subpopulations
with optimal individual firing rates proportional to �1, �2,
and 1� �1 � �2 and overall rates 0, 	1, 	2, and 1. The
sizes of the subpopulations are therefore P1 / �1 ¼ N	1,

0 5 10 15 20 25
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

θ

N

N=2 N=7 N=15 N=22

i

x

f

1θ

θ

θ2

1

θ1 1θ θ2

φ1

θ θ θ

φ
φ

1

1

2

2 3

θ1

θ

1

θ2

θ2

θ

θ

θ

3

3

4

x
θ1 θ θ21 θ θ θ21 3

N=2 N=7 N=15 N=22

θθθ
θ

4

3

21

4321θ θ θ θ

φ
φ
φ

Pi
P1 P P21 P P P321 P P P P4321

1
2
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P2 / �2 ¼ Nð	2 �	1Þ, and P3 ¼ 1� P1 � P2, as
shown in the lower insets in Fig. 1.

Our results lead to two main predictions for information-
optimal neural coding: (i) that the tuning curves are dis-
crete and (ii) that neural populations should form
subpopulations.

The prediction of subpopulations seems to have some
correspondence with known results, and we take, as an
example, coding of the sound level (at a fixed frequency)
by the auditory system. Inner hair cells (the sensory re-
ceptors that transduce sounds into neural activity) are each
connected to approximately 15 separate afferent nerve
fibers [22]. Physiological studies suggest that these fibers
can be grouped into two or three subpopulations based on
their threshold to the sound level [23,24].

The presence of three subpopulations would suggest that
a quaternary code (M ¼ 4) is used. From Fig. 2, this is
optimal when N � 15. If each afferent fires at a rate of
�100 spikes=s, then the time required for the population to
generate 15 action potentials is �10 ms. This time scale
agrees with the classical temporal-windowmodel proposed
to explain the human auditory system’s temporal resolu-
tion, in which temporal integration is performed by a
sliding window with an equivalent rectangular duration
of �7–13 ms [25]. Hence, quaternary coding is consistent
with the known parameters of auditory coding and
perception.

We now turn our attention to the prediction that optimal-
information tuning curves should be discrete. This cer-
tainly seems to be inconsistent with physiologically mea-
sured tuning curves. However, evidence for binary tuning
curves does exist—for a discussion, see [5]. There may
well be other reasons why they are not commonly observed
in practice. For example, the steepness of the slope of the
sigmoid is known to depend strongly on the nature of the
signal [26] and measurement window [27]. Consequently,
measuring the tuning curve with the ‘‘right’’ stimulus
(feature), x, and window duration may be crucial to ob-
serving a rapidly increasing curve that approximates a step
increase. At present it is not clear if such experiments have
been performed.

Of course, it is also possible that neural sensory systems
are not optimized for the transmission of information,
although we note that minimization of MSE also leads to
the prediction of binary tuning curves for short decoding
windows [5]. Alternatively, the model we consider may
need revision to make it physiologically more realistic. For
example, it may be necessary to include other sources of
noise and to take into account non-Poisson statistics.
Realistic signal statistics will also need to be considered.
Other constraints, such as metabolic penalty, may also be
important, although this is not likely to change the con-
clusion that information-optimal tuning curves are discrete
[16]. We hope our results will inform future discussion on
this topic and motivate further studies.
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