
Instanton Glass Generated by Noise in a Josephson-Junction Array

E.M. Chudnovsky

Physics Department, Lehman College, The City University of New York,
250 Bedford Park Boulevard West, Bronx, New York 10468-1589, USA

(Received 11 May 2009; published 23 September 2009)

We compute the correlation function of a superconducting order parameter in a continuous model of a

two-dimensional Josephson-junction array in the presence of a weak Gaussian noise. When the Josephson

coupling is large compared to the charging energy, the correlations in the Euclidian space decay

exponentially at low temperatures regardless of the strength of the noise. We interpret such a state as a

collective Cooper-pair insulator and argue that it resembles properties of disordered superconducting

films.
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Systems consisting of densely packed metallic grains
have been studied for decades; see, for review, Ref. [1].
They exhibit peculiar electronic properties that stem from
the quantum tunneling of electrons between the grains.
Numerous models of Josephson-junction arrays have
been employed to describe properties of granular super-
conductors [2]. The most recent theoretical research in this
area has been inspired by the experimental evidence of a
sharp low-temperature superconductor-insulator transition
in disordered films [3–6] (see also earlier experimental
works [7]). Various theoretical scenarios of the effect
have been proposed: suppression of the superconducting
order parameter by disorder in two dimensions [8], Bose
condensation of vortices [9], trapping of Cooper pairs due
to Coulomb blockade [10], collective superinsulator phase
[11], insulating Josephson phase quenched by the magnetic
field [12], overheating of electrons due to inefficient
electron-phonon processes [13]. Weak localization of
Cooper pairs and the possibility of Anderson localization
in the Coulomb blockade regime have been recently con-
sidered by Syzranov, Efetov, and Altshuler [14]. In the
model of Ref. [14] the Josephson-junction array is domi-
nated by the charging energy which determines the activa-
tion gap for Cooper pairs. In this Letter we argue that the
localization of Cooper pairs may occur regardless of the
relation between the charging energy and the Josephson
coupling energy. We compute the gap for a weakly disor-
dered array dominated by strong Josephson coupling. We
show that in this regime the dependence of the gap on
disorder and charging energy is entirely different from the
one in the Coulomb blockade regime.

We are concerned with the correlations of the order
parameter in a two-dimensional array of strongly coupled
superconducting grains in the presence of a weak Gaussian
noise. Below we demonstrate that regardless of the strength
of the Josephson coupling between the grains, the
imaginary-time correlation function of the order parameter
decays exponentially in 2þ 1 dimensions. We call such a
state an instanton glass and interpret it as a collective

Cooper-pair insulator in which Cooper pairs are weakly
localized within areas that include a large number of
grains. We consider superconducting grains that are suffi-
ciently large so that the fluctuations of the magnitude of the
complex order parameter � can be ignored. This condition
is satisfied when the distance between electron energy
levels in the grain, �, is small compared to j�j. However,
the phase �i of � on each grain is a dynamical variable
described by the Hamiltonian

H ¼ X
i

Ei
Cn

2
i þ

X
hi<ji

Eij
J ½1� cosð�i � �jÞ�

þX
i

�iJ½1� cosð�i ��iÞ�: (1)

The sum is over all grains, with hi < ji denoting the
summation over the nearest-neighbor pairs of grains. The
first term in Eq. (1) corresponds to the charging effect due
to the Cooper-pair exchange between the grains, with ni
being the number operator for the excess Cooper pairs at
the ith grain and Ei

C being the charging energy of the grain.

The second term describes the Josephson coupling of

strength Eij
J between the grains. The form of the last term

in Eq. (1) implies the existence of additional weak links
that allow some leakage of the Cooper pairs in and out of
the superconducting grains. In our model these weak links
are external to the two-dimensional Josephson-junction
array of the grains. They exist on top of the strong links
between the grains. One possible origin of such external
weak links could be, e.g., the presence of metallic islands
in the substrate in the vicinity of the film. We assume
random distribution of phases �J and call such a disorder
‘‘Josephson noise.’’
The prevailing view is that the ground state of a granular

superconductor depends on the ratio of the Josephson
coupling energy and the charging energy. If this ratio is
large, the Cooper pairs move freely between the grains and
the system is a superconductor. If the ratio is small, which
should be expected for small grains with large EC ¼
ð2eÞ2=ð2CÞ, then moving an excess Cooper pair into the
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grain costs too much energy. In such a case the Cooper
pairs are localized on individual grains and the system is an
insulator. In our model we require

EJ � EC; (2)

so that our granular film is electrically close to a homoge-
neous film. Quantitatively, this condition translates into a
large dimensionless tunneling conductance, g ¼
2�@=ðe2RÞ � 1, with R being the normal resistance of
the Josephson contact between the grains. In this case the
charging energy becomes renormalized by the Coulomb
screening of the excess charge on the grain, so that [1]

EC � j�j
g

� j�j: (3)

Large EJ, provides small differences between �i and �j at

the neighboring grains. On the contrary, we assume the
Josephson noise to be weak,

h�2Ji � hE2
Ji; (4)

so that the corresponding small tunneling conductances
allow an arbitrarily large difference between �i and �i.
In what follows we treat �i as a dynamical random field.
We show that contrary to previous theoretical findings, in
the presence of the noise, the Cooper pairs are localized at
T ¼ 0 within areas of size r / 1=h�2Ji even under the
condition (2).

Since ni and �i are canonically conjugated variables,

ni ¼ �i
d

d�i
; (5)

i@
d�i
dt

¼ ½�i;H � ¼ 2iEi
Cni: (6)

This allows one to replace ni in Eq. (1) by @ _�i=ð2Ei
CÞ. Then

the first term in Eq. (1) acquires the form of the ‘‘kinetic
energy.’’ The Euclidean action corresponding to the
Hamiltonian (1) is

Seff ¼
Z

d�

�X
i

@
2

4Ei
C

�
d�i
d�

�
2 þ X

hi<ji
Eij
J ½1� cosð�i � �jÞ�

þX
i

�iJ½1� cosð�i ��iÞ�
�
; (7)

where � ¼ it. Without the kinetic term this action is
equivalent to the XY spin model in a random field that
has been intensively studied in the past [15]. Without the
last term Eq. (7) has been also intensively studied (with and
without dissipation) in the 1980s in connection with the
possibility of the low-temperature reentrant superconduc-
tor—normal metal transition due to quantum fluctuations
of the phase [16]. The superconductor-insulator transition
at EC � 2EJ in a two-dimensional Josephson-junction ar-
ray has been confirmed by Monte Carlo simulations [17].
We are not aware of any theoretical investigation of the

ground state of the model described by Eq. (7) under the
condition (2).
The essential features of the model can be studied by

considering a square Josephson-junction array with a lat-

tice spacing a, Ei
C ¼ EC, E

ij
J ¼ EJ at T ¼ 0. Small differ-

ence of the phase for the neighboring grains allows one to
write for the nearest neighbors

cos½�ðriÞ � �ðrjÞ� � 1� 1
2½�ðriÞ � �ðrjÞ�2; (8)

�ðrjÞ � �ðriÞ þ ðrj � riÞ � ½r�ðrÞ�r¼ri : (9)

Substitution of these equations into Eq. (7), summation
over the four nearest neighbors in the square lattice, and
replacement of the summation over i by the integration
according to

P
i !

R
d2r=a2 yields a continuous field

model described by the action

Seff ¼
Z

d�
Z

d2r

�
@
2

4a2EC

�
d�

d�

�
2 þ EJ

�
d�

dr

�
2
�

þ
Z

d�
Z d2r

a2
�JðrÞf1� cos½�ðr; �Þ ��ðr; �Þ�g:

(10)

It is convenient to use dimensionless variables: ð �x; �yÞ ¼
ðx=a; y=aÞ, �� ¼ �=�0, with

�0 ¼ @

2
ffiffiffiffiffiffiffiffiffiffiffiffi
EJEC

p : (11)

In terms of these variables Eq. (10) becomes

Seff
@

¼
�
EJ

EC

�
1=2 Z

d3 �r

�
1

2
ð �r�Þ2 þ �J

2EJ

½1� cosð���Þ�
�
:

(12)

Here the integration is over dimensionless Euclidian coor-

dinates (d3r ¼ d �xd �yd ��); �r� is the 3d gradient of � with
respect to these coordinates.
We are interested in the limit of EJ � EC when Seff is

large compared to @ and the phase �ð�rÞ is a well-defined
semiclassical field. Quantum dynamics of such a field is
dominated by the extremal trajectories of Eq. (12), satisfy-
ing

�r 2� ¼ �J
2EJ

sinð���Þ: (13)

At �J ¼ 0 this equation possesses a solution �r� ¼ const
that describes a global superconducting current. In general,
for such a current to exist, the phases at distant points must
be correlated. We, therefore, want to compute the correla-
tion function

Cð�r1; �r2Þ � h�ð�r1Þ�yð�r2Þi
j�j2 ¼ hei½�ð�r1Þ��ð�r2Þ�i

¼ hcos½�ð�r1Þ � �ð�r2Þ�i; (14)

where r ¼ ð �x; �y; ��Þ. The average in Eq. (14) is over all pairs
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of points (�r1, �r2) in 2þ 1 dimensions that are separated by
the same distance j�r1 � �r2j.

The nonlinear dynamics of the field expressed by
Eq. (13) usually presents a problem for the computation
of the correlation function in Eq. (14). Below we use a
mathematical trick that under the condition (4) allows one
to obtain Cð�r1; �r2Þ exactly with a conventional choice for
the noise. We introduce a random two-component vector
field,

f ð�rÞ ¼ ½f1; f2� ¼ ½�Jð�rÞ cos�ð�rÞ; �Jð�rÞ sin�ð�rÞ�; (15)

and write Eq. (13) in the integral form:

�ð�rÞ ¼ 1

2EJ

Z
d3 �r0Gð�r� �r0Þ½f1ð�r0Þ sin�ð�r0Þ

� f2ð�r0Þ cos�ð�r0Þ�; (16)

where Gð�rÞ ¼ �1=ð4�j�rjÞ is the Green function of the 3d

Laplace equation, satisfying �r2Gð�rÞ ¼ �ð�rÞ. Substituting
Eq. (16) into Eq. (14) one obtains

Cð�r1; �r2Þ ¼
�
exp

�
i

2EJ

Z
d3 �r½Gð�r1 � �rÞ �Gð�r2 � �rÞ�

	 ½f1ð�rÞ sin�ð�rÞ � f2ð�rÞ cos�ð�rÞ�
��
: (17)

To proceed with the calculation of the space average in
Eq. (17) one needs to choose the model of the noise. The
simplest choice corresponds to the Gaussian distribution
for the probability, P, of any given realization fð�rÞ:

P½fð�rÞ� / exp

�
� 1

2h�2Ji
Z

d3 �rf2ð�rÞ
	
; (18)

which also provides the definition of h�2Ji. With this as-
sumption Eq. (17) becomes

Cð�r1; �r2Þ ¼
�Z

D2ffg exp
�
� 1

2h�2Ji
Z

d3 �rf2
�	�1 Z

D2ffg

	 exp

�Z
d3 �r

�
i

2EJ

½Gð�r1 � �rÞ �Gð�r2 � �rÞ�

	 ½f1ð�rÞ sin�ð�rÞ � f2ð�rÞ cos�ð�rÞ� � f2

2h�2Ji
��
;

(19)

where
R
D2ffð�rÞg ¼ R

Dff1gDff2g denotes functional in-

tegration over the realizations of disorder.
At first glance the evaluation of the above correlator may

seem hopeless because it requires the explicit knowledge
of �ð�rÞ created by fð�rÞ. To see that Cð�r1; �r2Þ can be calcu-
lated exactly in the limit of weak noise, we first notice that
according to Eqs. (4) and (13) the contribution of fð�rÞ to the
spatial derivatives of �ð�rÞ is generally small. In fact, as is
shown below, the significant change in �ð�rÞ occurs over the
distances �r� E2

J=h�2Ji � 1. This means that the value of �
at a certain point �r has very little correlation with f at that

point. Consequently, to the lowest order on the noise, the
dependence of �ð�rÞ on fð�rÞ in Eq. (19) can be neglected,
and the remaining Gaussian integration over f can be easily
performed. As a result, sin�ð�rÞ and cos�ð�rÞ in the exponent
nicely combine into sin2�ð�rÞ þ cos2�ð�rÞ ¼ 1, yielding

C ¼ exp

�
�h�2Ji

8E2
J

Z
d3 �r½Gð�r1 � �rÞ �Gð�r2 � �rÞ�2

�

¼ exp

�
�h�2Ji

4E2
J

Z d3 �q

ð2�Þ3
1� cos½ �q � ð�r1 � �r2Þ�

�q4

�
: (20)

Further integration gives

Cð�r1; �r2Þ ¼ exp

�
�j�r1 � �r2j

l

�
; l ¼ 32�E2

J

h�2Ji
: (21)

Phase correlations that decay exponentially in both
space and imaginary time indicate that the Josephson-
junction array is in the insulating state [18]. Since the
instanton solutions of Eq. (13) describe tunneling trajecto-
ries of Cooper pairs, we call such a state an ‘‘instanton
glass.’’ The presence of a finite correlation length in the
(x, y) plane,

Rc ¼ 32�E2
J

h�2Ji
a; (22)

implies that at any given moment of time the phase corre-
lation is lost over spatial distances greater than Rc. At any
point in space there is also a finite correlation length in the
imaginary time,

�c ¼ 32�E2
J

h�2Ji
�0; (23)

that implies the existence of the energy gap,

�IG ¼ @

�c
¼ h�2Ji

16�EJ

�
EC

EJ

�
1=2

; (24)

characteristic of an insulator [18]. It represents the local-
ization energy of Cooper pairs within overlapping areas of
size Rc. Note the importance of the charging energy, EC, in
the formation of the gap.
Applied to a granular film, the above results mean that

Cooper pairs are localized within regions of size Rc that are
large compared to the average size of the grain a. If the
dimensions of the film, L, are greater than Rc, the film
should be a Cooper-pair insulator. At T � �IG the con-
ductivity of such a film must be due to the thermal hopping
of Cooper pairs between regions of size Rc, obeying the
law expð��IG=TÞ. Note that in our model the insulating
gap is small compared to the Kosterlitz-Thouless tempera-
ture, TKT ¼ �EJ. So far we have not included the magnetic
field into the problem. Its treatment within our model is
much more involved, but a plausible speculation can be
made about the expected effect of the field. It is known to
suppress Josephson tunneling. The weaker the coupling the
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smaller is the critical field that destroys the tunneling. In
our model the weakest links are the external ones charac-
terized by the coupling strength �J. They will be destroyed
by the field first, making the localization length (22) infi-
nite and destroying the insulating gap (24). The nonmono-
tonic dependence of the Josephson coupling on the field
[19] may lead to the nonmonotonic field dependence of
the gap. The expected temperature and field behavior of
the instanton glass is, therefore, in a qualitative agreement
with experimental findings in disordered superconducting
films [5].

Also in agreement with experiment is the fact that such a
behavior is pertinent to a two-dimensional system and does
not appear in a three-dimensional superconducting sample.
Indeed, for a 3d sample, the calculation similar to the one
performed above, but with the Green function G4ð�rÞ ¼
�1=ð4�2j�rj2Þ instead of G3ð�rÞ ¼ �1=ð4�j�rjÞ, provides a
power-law decay of the correlations of the phase in a 3þ 1
Euclidian space. The corresponding 3þ 1 correlation
length is, therefore, infinite and the gap is zero. Such a
dependence of the correlations on the dimensionality of
space is typical for models with a continuous order pa-
rameter in the presence of quenched disorder [20,21]. Our
approach is, in effect, an extension of the Larkin-Imry-Ma
theorem to the Euclidean space-time for problems that
involve tunneling in the presence of noise. Note in this
connection that similar to problems with quenched disor-
der the exact form and origin of the noise may not be
important for the onset of the insulating phase.

In conclusion, we have demonstrated that Josephson
noise, no matter how weak, destroys long-range space-
time correlations of the order parameter in a two-
dimensional Josephson-junction array regardless of the
tunneling conductance. We leave it to the experimentalists
to analyze whether the noise necessary to generate the
insulating phase was present in experiments that reported
low-temperature superconductor-insulator transition in
disordered films.
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