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Electrons in a metal subject to a magnetic field commonly exhibit oscillatory behavior as the field

strength varies, with a period set by the area of quantized electronic orbits. Recent experiments on

elemental bismuth have revealed oscillations for fields above 9 T that do not follow this simple

dependence and have been interpreted as a signature of electron fractionalization in the bulk. We argue

instead that a simple explanation in terms of the surface states of bismuth exists when additional features

of the experiment are included. These surface electrons are known to have significant spin-orbit

interaction. We show the observed oscillations are in quantitative agreement with the surface theory,

which we propose to test by studying the effect of the Zeeman coupling in higher fields, dependence on the

field orientation, and the thickness of the samples.

DOI: 10.1103/PhysRevLett.103.136803 PACS numbers: 73.20.�r, 71.70.Di, 73.25.+i, 75.47.�m

Elemental bismuth has recently attracted renewed inter-
est due to the experimental observation by Behnia et al. of
anomalous quantum oscillations at high magnetic fields
*9 T along the trigonal crystal axis [1]. Plateaulike fea-
tures in the Hall resistivity in this range of fields were taken
as an indication of bulk electron fractionalization, in a
manner reminiscent of the fractional quantum Hall (FQH)
effect in two dimensions (2D). A second experiment by
Li et al. found evidence for a new phase of electrons at such
high fields [2]. Some theoretical work has followed [3];
however, the anomalies [1] remain unresolved.

The idea of fractionalization in a bulk material is quite
intriguing, especially in an isotropic semimetal such as
bismuth. To this date, the only known realizations of frac-
tionally charged particles are solitonic excitations of con-
ducting polymers [4], FQH state of 2D semiconductor
heterostructures [5,6], and confined quarks of quantum
electrodynamics. Highly anisotropic relatives of the inte-
ger quantum Hall effect are found in layered semiconduc-
tor heterostructures [7] and Bechgaard salts [8] but no FQH
state yet. The key experimental signature of FQH states is a
plateau in the sideways resistivity at fractional values of
h=e2 and a concomitant vanishing of the longitudinal
resistivity. While the stability of FQH states derives from
Coulomb interaction and weak disorder, their existence
owes to the essential role of topology in 2D. Theoretical
extensions of fractionalization in 3D rely either on an
anisotropic structure or on background topological struc-
tures such as solitons in a relativistic Dirac Hamiltonian. It
is not clear that such anisotropy as in the first scenario
occurs in bismuth and although electrons in bismuth are
known to have a Dirac-like dispersion, it is not clear what
field would provide the topological background in the
second one. Furthermore, the longitudinal resistivity in
bismuth is found to be rather featureless at such field
orientations [1,9]. The torque magnetometry [2], which is
a sensitive bulk measurement, does not show these anoma-
lies either, casting further doubt on a FQH scenario. We

believe based on these considerations an alternative expla-
nation of the observed anomalies is strongly favored.
Indeed we shall argue in this Letter that the anomalous

peaks can be explained in a simple fashion by the states
confined to the (111) surface of bismuth. In particular, a
distinct indexing of Landau levels according to the surface
states with a period of oscillation � 0:016 T�1 explains
the experimental data. The surface theory predicts (i) the
existence of additional features that might have already
been observed and an additional peak at higher fields
�60 T corresponding to the surface quantum limit, and
(ii) a distinct dependence of the field at the peaks on the
angle � of a tilting field relative to the trigonal axis. The
magnetic fields so far studied fall below the surface quan-
tum limit. However, the Zeeman coupling of surface elec-
trons could reduce the quantum limit down to 40–50 T.
These features should allow for a falsification of the
surface-state theory of the anomalous peaks.
Quantum oscillations are ubiquitous in metals. As the

field changes, the Landau levels cross the Fermi energy and
depopulate their electrons at certain fields B�1

n ¼
ðnþ �Þ�B�1, where 0< �< 1 is a correction arising
from the quantum mechanical nature of the electronic orbit
(� ¼ 1=2 for free electrons) and

�B�1 ¼ ð2�Þ2
�0SF

: (1)

Here, SF is an extremal area of the Fermi surface perpen-
dicular to the field and�0 ¼ hc=e is the unit flux quantum.
The coincidence of the Fermi and Landau energies results
in enhanced or singular contributions to most electronic
properties; hence they show an oscillatory structure with
B�1 with the period of oscillations given by the Onsager
relation, Eq. (1).
Because of its low carrier density and long mean-free

path, bismuth exhibits periodic oscillations in its suscepti-
bility and resistivity starting at fields below 1 T [10,11].
Using Eq. (1) and the known Fermi surfaces of electron-
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and holelike carriers in bismuth, one finds that 9 T corre-
sponds to depopulating all but the lowest Landau level for
holes, followed closely by that of electrons, the so-called
quantum limit. A recent study of the Landau levels of
electrons and holes in bismuth, including the effects of
the linear dispersion of electrons, accounts for most of the
peaks observed below this field [3] with distinct depen-
dence on the field orientation. The anomalous peaks [1] do
not follow Eq. (1).

Bismuth also has a variety of interesting electronic states
confined to its surfaces [12–14]. The (111) surface perpen-
dicular to the trigonal axis has been studied in depth using
ARPES and other techniques and found to host a number of
carriers equivalent to a 1 �m-thick sample of the bulk. The
samples in the experiment [1] have a thickness of 0.8 mm;
so, despite their higher relative carrier density one expects
the Nernst signal of the surface to be weaker than that of
the bulk by a factor of at least 1000. This is certainly true
for fields below the quantum limit. However, above the
quantum limit, the strong peaks from the bulk will be
absent and the surface signal could be detected much
more easily. The surface states in bismuth and related
materials have also gained attention in relation to ‘‘topo-
logical insulators’’ [15]. The important ingredient in such
physics is the significant spin-orbit interaction (SOI) that
causes a large energy splitting in the surface states and
leads to a single spin state per momentum. In bismuth the
role of SOI has been appreciated and has been shown to be
the cause for the existence of hole Fermi surfaces. At the
(111) surface, the SOI results in six elongated hole Fermi
pockets arranged around an electron pocket centered at the
�� point in the hexagonal Brillouin zone [13].
In order to study the effects of the Zeeman coupling and

tilting fields we model the surface states of Bi(111) by a
low-energy continuum Hamiltonian

H ¼ p2

2m
þ �� � ðp� ẑÞ; (2)

where p is the momentum operator,m is the effective mass
of electrons, � ¼ ð�x; �yÞ are spin Pauli matrices, and the

last term is the Rashba-type SOI with strength �. The
trigonal axis is taken to be along the ẑ direction. The
spectrum of Eq. (2) is shown in Fig. 1(a) and 1(b) and
consists of a small and a large Fermi pocket. There is a
single spin state for each momentum p given by a spin
along p� ẑ. In this model both of these pockets are
electronlike, which is an artifact of the model. In reality,

for higher momenta away from the �� point, the lattice ef-
fects become important. This results in a bending of the
bands, giving rise to holelike pockets. The lattice anisot-
ropy further reduces the symmetry creating disjoint oblong
hole pockets. Based on angle-resolved photoemission
(ARPES) data, we set m ¼ 0:45me (me is the real electron

mass), � ¼ 1:2 eV �A and �F ¼ 68 meV. These parame-

ters reproduce the radius of the small electron pocket pe
F ¼

�m�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm�Þ2 þ 2m�F
p ¼ 0:043 �A�1 [see Fig. 1(c)]

within the experimental resolution (�0:023 �A�1) and

give a Fermi velocity vF ¼ pe
F=mþ � ¼ 1:9 eV �A in

good agreement with the data [12,14]. The lower band
crosses the Fermi energy at ph

F ¼ pe
F þ 2m� ¼

0:185 �A�1 corresponding to one end of the hole pocket.
In 2D, the period of oscillations is also given by Eq. (1)

but with SF now simply being the area of the Fermi pocket.
We shall see this explicitly in our model. The orbital effect
of the magnetic field is found by the minimal coupling p !
p� e

cA in Eq. (2), where A is the vector potential. The

Zeeman energy is HZ ¼ �g�B�zB for a field along ẑ,
where�B ¼ e@=ð2mecÞ is the Bohr magneton. The experi-
mental determination of the g-factor usually relies on
matching the Zeeman energy splitting with the Landau
level spacing, and thus requires a knowledge of the spec-
trum itself. In the following we shall take g as a fitting
parameter which allows its determination from our theory
in a tilting field.
The spectrum in the magnetic field can be found exactly.

Let us first define

� ¼ � �
�
p� e

c
A

�
� ẑ� geff�B

�
�zB; (3)

with geff ¼g�me=m. Then by using the commutation re-
lations ½px � e

c Ax; py � e
c Ay� ¼ ið@e=cÞB and the identity

�2 ¼
�
p� e

c
A

�
2 � @e

c
�zBþ

�
geff�B

�
B

�
2

þ @
geff�B

�
� � rB; (4)

a

c

b

FIG. 1 (color online). The spectrum of the surface Hamiltonian
(a) without and (b) with spin-obit interaction. The Fermi ener-
gies are marked, as are the Fermi wave vectors for the small and
large Fermi pockets. (c) Sketch of Fermi pockets in the surface
Brillouin zone (to scale). The two circles are from our model.
The central (yellow) hexagon and the outward (green) ellipses
are from ARPES measurements [14]. The thickness of the lines
(pink) represents the experimental resolution. The dashed hexa-
gon indicates the symmetry of the pockets and the Brillouin
zone.
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we find

H ¼ �2

2m
þ ��� 1

2m

�
geff�B

�
B

�
2
: (5)

We have assumed the spatial variation of the field to be
negligible, which is justified when the last term in Eq. (4)
is small compared to the Landau level spacing �@!c.
This yields �B=B � L=	 where �B is the spatial varia-

tion of the field over a characteristic length L, and 	 ¼
geff@=ð4me�Þ ¼ geff � 1:6 �A. This is in fact a much less
strict condition than the one needed for obtaining Landau
levels when geff ¼ 0, namely, �B=Bn < n�1 for the nth
Landau level.

The spectrum of� is the same as that of Dirac electrons
in a magnetic field with velocity � and Zeeman coupling
geff . This is known in the context of the quantum Hall
effect in graphene, and is given by

En;s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m@!cðnþ sÞ þ

�
geff�B

�
B

�
2

s
: (6)

Here n ¼ 0; 1; � � � and s ¼ 0, 1 are Landau level indices
and !c ¼ eB=ðmcÞ is the cyclotron frequency. From
Eq. (5), we have

��n;s ¼ @!cðnþ sÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�2

@!cðnþ sÞ þ ðgeff�BBÞ2
q

:

(7)

The � correspond to small (�) and large (þ) Fermi
pockets. Note that the level n, s ¼ 1 are degenerate with
nþ 1, s ¼ 0. The lowest Landau level n ¼ s ¼ 0 is
nondegenerate.

Let us first neglect the effective Zeeman coupling by
setting geff ¼ 0. Then by setting �n;s ¼ �F we can derive

Eq. (1) with SF ¼ SeF ¼ �ðpe
FÞ2 for the small electron

pocket and similarly for the large one. Consequently, the
fundamental period of oscillations in the surface theory is
then found to be

�B�1 ¼ 0:016 T�1: (8)

The Zeeman term changes the linear dependence of 1=Bn

on the Landau level index. This can be understood by
formally neglecting the orbital coupling and keeping only
the Zeeman coupling HZ. Then one finds two bands

�ðp; �Þ ¼ p2

2m þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2p2 þ ðgeff�BBÞ2

p
, where � ¼ �1 is

the sign of the spin projected along �p� ẑþ geff�BBẑ.
As a result, the small electron pocket shrinks and the large

Fermi pocket expands by the same area �SF ¼ ph
F�pe

F

ph
Fþpe

F

�
ðgeff�B

� BÞ2. The Fermi energy is unchanged. With our

choice of parameters, �SF=S
e
F ¼ 7:4� 10�7ðgeffB=TÞ2 �

10% when geffB ¼ 370 T. The field-dependent area of the
Fermi pocket then leads to a nonuniform Landau level
spacing and the depopulation of Landau levels at lower
fields. In particular the surface quantum limit B1ðgeffÞ is a
decreasing function of geff . The deviation from the linear

dependence should be observable in fields* 40–50 T for a
value of geff � 10.
We now turn to the experiments. Ref. [1] identified three

clear peaks in the Nernst signal beyond the bulk quantum
limit. In Fig. 2(b), we fit these peaks with Eq. (7). The
index n now counts the Landau levels of the surface. The
quantum limit is found to beB1ðgeff ¼ 0Þ ¼ 63 Twhen the
Zeeman coupling is neglected. Also shown are fits obtained
for geff ¼ 8 and 15 with B1 ¼ 54 T and 43 T, respectively.
In this surface scheme, the peaks in Ref. [1] correspond to
n ¼ 2, 3 and 5. The bulk quantum limit coincides with the
surface n ¼ 7 Landau level. The n ¼ 4 and 6 Landau
levels correspond to fields 15.7 and 10.5 T, respectively.
We reproduce in Fig. 2(a) the data of Ref. [1] with the
above features marked. Interestingly, the n ¼ 4 and 6
Landau levels seem to show up in this data, in addition
to the more clear peaks originally identified. The n ¼ 6
level is strongly shadowed by the bulk quantum limit
signal, and the n ¼ 4 peak seems to develop for tempera-
tures <0:83 K and is clearly visible, though rather broad,
at 0.56 K.
We submit that the good fit obtained here with the

extended set of peaks observed in Ref. [1] is evidence of

a

b

FIG. 2 (color online). (a) The Nernst signal of Ref. [1] (digi-
tized) with the surface Landau levels (n ¼ 1; � � � ; 7) marked.
The dashed lines are n ¼ 4 and 6. (b) Fits of the inverse field at
the peaks from Eq. (7). The peaks identified in Ref. [1] are
shown by circles. The straight line is obtained for geff ¼ 0 for
which B�1

4 and B�1
6 are shown by squares. The dotted and

dashed curves are for geff ¼ 8 and 15, respectively. The quantum
limit is obtained at the intersection with the vertical line.
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the surface origin of these peaks. More recently, further
magneto-transport experiments by Huber et al. [16] on
bismuth nanowires in fields up to 14 T have also clearly
identified peaks caused by surface Landau level structure.
The period of oscillations in nanowires is �0:025 T�1,
larger than that found here. This could be caused by the
different geometry of the nanowire surfaces which can
influence the size of the Fermi pockets.

We briefly discuss the effects of tilting the magnetic field
on the surface states. For a field at an angle � with the
trigonal axis, the effective field entering the orbital cou-
pling is reduced by a factor cos�. The Zeeman coupling
should also include a term �g?�B� � B?, where B? is

the in-plane component of the field. That the orbital cou-
pling is not affected by B? can be seen by choosing a
gauge where A ¼ ð0; Bx cos�; jB? � rjÞ where r ¼ ðx; yÞ
is the in-plane coordinate vector. The in-plane Zeeman
coupling has the effect of shifting the momenta along
B? � ẑ. In addition, it results in an increase in the Fermi
energy and introduces an angular dependence in the spec-
trum thus making the Fermi surface slightly anisotropic
with a remaining reflection symmetry around B?.
However, unlike the ẑ-axis Zeeman coupling, it does not
lead to a significant change in the size of the Fermi pockets.
Its strength is further diminished at small � and therefore
we do not expect a significant effect from the in-plane field
on the surface states and the period of quantum oscilla-
tions, unless g? is anomalously large.

Shubnikov–de Haas measurements of single-crystal thin
films (�10 �m) of bismuth up to a few Tesla show only the
bulk carriers [17]. Why are the surface-state peaks not seen
at lower fields? While we do not have a quantitative
answer, we can qualitatively explain this ‘‘low-field invisi-
bility’’ of surface states as follows. First, the peaks are seen
when !c
 > 1, where 
 is the relaxation time of the

carriers. Since !c / m�1 it is smaller by roughly an order
of magnitude at the surface than the bulk. The relaxation
time at the surface is also expected to be shorter than the
bulk. So, the surface peaks can only be seen at fields higher
by more than an order of magnitude than those for the bulk,
i.e., close to the bulk quantum limit. Secondly, the enve-
lope of the oscillation peaks is expected to be different in
2D and at high fields from the usual Lifshitz-Kosevich
dependence, because at high fields the chemical potential
crosses only a small number of Landau levels as opposed to
many in the low-field limit or in 3D [18]. This results in a
precipitous decrease in the amplitude as a function of 1=B;
that is, the oscillations due to the surface diminish faster as
the field is decreased relative to the bulk.

There are additional electron pockets near the �M point
[not shown in Fig. 1(c)] which could give rise to additional
oscillations. The holes are nearly compensated with the
electrons. Therefore one should expect a beating with a
period &6 times the period of the central electron pocket.
The resulting nodes in the amplitude of oscillations might

offer an explanation for the suppression of the peak near
n ¼ 4. A clear test of the surface origin of the anomalous
peaks is the dependence on the thickness of the samples.
One could also try contacting only the surfaces for com-
parison. A whole family of bismuth-based materials show
similar surface states offering another venue for testing
their transport signatures. This is especially illuminating in
topological insulators [15] where the bulk states are
gapped. It is conceivable that the anomalies are caused
by a bulk reorganization of electrons [3]. This is even more
plausible if accompanied by a change in the longitudinal
resistivity. However, absent further evidence, we believe
the surface theory provides a satisfactory explanation of
the current data.
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Note added.—After this Letter was submitted, Taskin

and Ando [19] reported the observation of quantum oscil-
lations in a topological insulator Bi1�xSbx with 2D char-
acter and !c
 � 3, in agreement with our theory. A full
account of their findings, however, requires going beyond
our simplified model.
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