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Complex Fluid Approach to Supercooled Liquids
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Using molecular dynamics simulations, we show clear evidence for the nonlocal mesoscopic nature of
the anomalous viscous transport in a supercooled liquid and its direct link to dynamic heterogeneity: (i) a
distinct crossover from the microscopic to macroscopic viscosity at a mesoscopic length scale, which is

comparable to the correlation length of dynamic heterogeneity and grows with an increase in the degree of

supercooling; (ii) a strong anisotropic decay of the shear-stress autocorrelation at a finite wave number,
which indicates intrinsic decoupling between the longitudinal and transverse dynamics. Our findings
suggest the fundamental importance of the growing dynamic correlation in anomalous transport and shed

new light on the nature of slow dynamics.
DOI: 10.1103/PhysRevLett.103.135703

Structural relaxation of a supercooled liquid dramati-
cally slows and its viscosity steeply increases while ap-
proaching the glass transition point T,. The origin of this
viscous slowing down is the central problem of glass
transition. One of the most successful theories is mode
coupling theory (MCT), which has been considered to
have a microscopic basis and to explain various key aspects
of vitrification [1,2]. In this theory, jamming of density
fluctuations with wavelengths comparable to the cage size
(~ particle size d) is the origin of the excessive slowing
down of macroscopic structural relaxation, and thus there
is no mesoscopic length scale in the theory. Thus, in the
ideal MCT framework, glass transition is regarded as a
particle-scale phenomenon. This is a natural consequence
of the fact that the current MCT for supercooled liquids is a
direct extension of that for simple liquids: In a simple
liquid the only characteristic length is the interparticle
distance (~d), and there is no characteristic structure
beyond this length [3,4]. Consequently, the viscous trans-
port does not exhibit any significant dependences on wave
number k for kd < 1. That is, in a simple liquid, macro-
scopic hydrodynamics can be applied even for particle-
scale phenomena [5].

This “simple liquid” picture may not cover all aspects
of the anomalous dynamic features: In the last decade, the
concept of dynamic heterogeneity (DH) has been estab-
lished by experiments [6,7] and simulations [8—10]. In a
supercooled liquid, structural rearrangement occurs in a
spatially heterogeneous and correlated manner, whose size
grows while approaching T, and becomes much larger than
the cage size [8—12]. This is suggestive of the existence of a
dynamical hierarchical structure beyond the cage size in a
supercooled liquid. How the presence of such a dynamical
heterogeneity is linked to the viscous transport anomaly of
a supercooled liquid remains elusive. In this Letter, we
show that what is known in the field of complex fluids (or
soft matter), which also exhibit slow dynamics, sheds new
light on this problem.
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Unlike simple liquids, complex fluids frequently possess
conspicuous mesoscopic internal structures (size ), which
lead to slow structural relaxation (relaxation time 7)
[13,14]. This results in a viscoelastic response, which is
characterized by a marked frequency (w) dependence of
the transport coefficient for w7 = 1. In addition to this
temporal nonlocality, the viscous transport of complex
fluids also exhibits spatial nonlocality. The shear viscosity
n of a complex fluid with mesoscopic internal structures
exhibits a marked k dependence for k¢ = 1 [14]: n(k)
increases with a decrease in k within a cooperative length
scale (k¢ > 1), as a consequence of the renormalization of
smaller-scale (< k') fluctuations. For k¢ < 1, on the
other hand, such fluctuations are completely renormalized
and averaged, and thus 7(k) becomes equal to its macro-
scopic (k = 0) value. Nonlocal viscous transport in critical
fluids is such a typical example [14,15].

Here we note that this nonlocality is not limited to a
system with a static mesoscopic structure. For example,
entangled polymer solutions are characterized by the vis-
coelastic length &, [14,16-18], whose origin is the coex-
istence of topological entanglement and dynamic
asymmetry between polymer and solvent and thus purely
dynamical. In this case, even without “static’ spatial het-
erogeneity or correlation, the viscous transport exhibits
significant nonlocality, which is characterized by a cross-
over from microscopic (solvent) to macroscopic (polymer)
viscosity at k&, ~ 1 and a strong decoupling between
longitudinal and transverse dynamics at a finite k [19-21].

The above example suggests that we may examine the
possible relevance of DH with a mesoscopic length scale in
the viscosity anomaly of a supercooled liquid by studying
the nonlocality of the viscous tranport. In this Letter, thus,
we systematically investigate the k dependence of n(k) and
the wave-vector (k) dependence of shear-stress autocorre-
lation function. Previously, Kim and Keyes investigated
1(k) of a supercooled liquid in relation to the breakdown of
the Stokes-Einstein relation and reported a nonlocal nature
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of the viscous dissipation [22]. Here we will show (a) an
intimate link between the nonlocal viscous transport and
DH and (b) evidence of strong decoupling between longi-
tudinal and transverse shear-stress relaxation. We also
discuss implications of these findings on the origin of
slow dynamics.

We used a three-dimensional glass-forming model lig-
uid, which is a mixture of two atomic species, A and B with
N, = Np = 20000. The particles interact via the soft-core
potentials v;;(r) = e(d,;;/r)'? with d;; = (d; +d})/2,
where r is the distance between two particles, d; is the
particle size, and i, j = A, B. The mass and size ratios are
mg/my = 2 and dg/d, = 1.2, respectively. We fixed the
particle number density at a value of (N4 + Ng)/V =
0.8/d3, where V is the system volume. Space and time
were measured in units of d, and 7, = (m,d%/€)'/?, re-
spectively. So the linear dimension of the system is L =
36.84. The temperature and viscosity were measured in
units of €/kp and €7,/d3, respectively. The simulation was
carried out using velocity Verlet algorithms, in the NVE
ensemble.

We quantify DH and the associated correlated
dynamics by the four-point correlation function [11]: The
time-dependent ‘“‘order parameter’ that measures the num-
ber of overlapping particles in two configurations sepa-
rated by a time interval ¢ is defined as Q(t) =
[ dridryp(ry, 0)p(ry, t)wiy, where p(r, 1) =3V, 8(r —
r;(t)) is the density. Here w;, = w(lr, — r;|), where
w(lr]) =1 (0) for |r| <0.3 (>0.3). The mean square
variance of Q(r) measures the degree of the cooperativity
of structural relaxation: y.(t) = (V/TN»)[{Q*(t)) —
(Q(#))*]. It can be written in the form of spatial integration
as  x4(t) = (V/TN?) [drG,(r,t), where G,(r,t) =
Y k(8@ + ri(0) — ri(0)wywy) — (Q(1)*. Its Fourier
transformation yields the following structure factor
Sylk, 1) = (1/TNp)p(k, )p(—k, 1)), where p(k, 1) =
1/NY,; ;e*m©Ow,; Figure 1(a) shows the intermediate
scattering function (self-part) for A particles, F,(k, t) =
SN (e~ ko lr0=riOly /N, where |ko| = 27r. We also show
xa(7) in Fig. 1(b).

The k-dependent shear viscosity can be calculated from
the autocorrelation function of the transverse momentum
current density [3,4,23,24], which is defined as j;(k, t) =
1/V/N 3N mv! (1)e* ) where v! (1) is the transverse part
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FIG. 1.

(a) F(ko, t) and (b) y4(r) for several temperatures.
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of the velocity of particle i [i.e., v!(7) - k = 0]. Then the
autocorrelation function is defined as ¢ (k, 1) = (j(k, 1) -
jr(=k,0)). Thus, we have n(k)= (p,/k*) X
L[S dicy(k, 1)/cy(k,0)]7!, where p,, is the mass density.
Figure 2(a) shows the k dependence of n(k) for several
temperatures. At high-temperature normal-liquid states
(T = 0.473), n(k) smoothly approaches its macroscopic
(k = 0) value with a decrease in k, already at a wavelength
comparable to the particle size. This suggests that there is
no important length scale beyond the cage size in a normal-
liquid state. On the contrary, in supercooled states (7' <
0.306) the k dependence of 7(k) becomes more pro-
nounced for lower 7. In a highly supercooled state (T =
0.267), n(k) increases almost 10* times when k decreases
from the microscopic (k ~ 277/ d) to the macroscopic value
(k = 0). This highly nonlocal nature of the viscosity means
that the transverse viscous stress is not determined only by
the local strain rate but is severely influenced by velocity
fluctuations of a wide range of k. That is, macroscopic
hydrodynamics is valid only for k < 27r/¢. This nonlocal-
ity strongly suggests that a growing dynamic correlation
dominates the viscosity anomaly. To verify this, we study a
standard measure of dynamic correlation length, &4, which
is the characteristic length of DH [11]. Figure 2(b) shows
the behavior of £, and &,, which are determined by the
half-value widths of (k) and S4(k, t = 7,), respectively.
Here 7, is defined as a time when x,(#) takes its peak.
Interestingly, &, and &4 grow in quite a similar manner.
This indicates an intimate link between the nonlocality of
the viscous transport and DH. Here we note that &, char-
acterizing the k dependence of 1(k) should not be confused
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FIG. 2 (color online). (a) The k dependence of m, m(k),
for several temperatures (red solid curves). n(k) can be well
fitted by the empirical function, n(k = 0,T)/[1 + (£,(T)k)* +
(/\n(T)k)4] (blue dashed curves), where n(k = 0, T) is the mac-
roscopic shear viscosity obtained by the Green-Kubo formula.
(b) &, and &, scaled by their values at 7 = 1.15 are plotted
against 1/T. (c) T dependence of n(k, T) for different values of
k. The upper and lower solid curves represent Vogel-Fulcher and
Arrhenius fitting, respectively.
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with the so-called hydrodynamic length, which is the
persistence length of a propagating shear elastic wave. In
our binary soft-core system, even in a normal-liquid state
(T ~ 0.473) the hydrodynamic length much exceeds our
system size (L = 36.84) [25].

Figure 2(c) plots n(k, T) against 1/T for different k’s.
For a small enough k (k¢, < 1) n(k, T) approaches the
usual Vogel-Fulcher law. For a microscopic scale (k&,, >
1), on the other hand, n(k, T) shows the Arrhenius-type T
dependence, indicating that the relaxation of the transverse
modes on a microscopic scale does not exhibit any anom-
aly (slowing down) even in a highly supercooled state. This
can be more clearly seen in Fig. 3, where the shear-stress
autocorrelation function, H(k, t) = (o, (k, t)o,,(—k, 0)),
is plotted for several k’s both for a supercooled and normal
state. Here o,,(k, 1) is calculated using the microscopic
expression of the xy component of the shear stress [3]. For
k= (k/ V2, k/ V2,0), axy(k, t) is directly coupled to the
longitudinal modes [26]: In a supercooled state, H(k, 1)
very slowly decays in a time scale of the a relaxation and
nearly collapses on a single curve for long time (t = 7,)
[see Fig. 3(a)]. For k = (k,0,0), on the other hand,
0,y (k, t) is the almost purely transverse shear stress [26]:
Along this direction, H(k, t) decays very quickly within the
[B-relaxation time scale, while exhibiting a pronounced
anticorrelation [see Fig. 3(b)]. This strong anisotropy of
the shear-stress relaxation is a consequence of decoupling
between the longitudinal (structural) and transverse relaxa-
tion modes at finite k: The longitudinal relaxation requires
highly cooperative rearrangements of many particles,
whereas the transverse relaxation can proceed only by
local dissipative rotational or pure shear motions, which
do not require translational particle diffusion. It is worth
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FIG. 3 (color online). The upper row: the decay of the shear-
stress autocorrelation function H(k, 1) = (o, (k, t)o,,(—k, 0))
for a supercooled state (7 =0.306). (a) is for k=
(k/~J2, k/+/2,0), and (b) is for k = (k, 0,0). The angular aver-
age, (H(k, 1))q, is plotted in (c). The lower row: the same plots
for a normal-liquid state (7 = 1.35).

noting that this decoupling becomes more pronounced for
lower T. In a normal-liquid state, where there is no sepa-
ration between the « and S regime, H(k, t) decays with the
same time scale in all directions [see Figs. 3(d)-3(f)]. For
k = (k,0,0) we can also see distinct anticorrelation [see
Figs. 3(e)]. Thus, we may conclude that the strong decou-
pling between longitudinal and transverse dynamics is
characteristic of a supercoold liquid.

Here we consider whether these findings can be ex-
plained by a microscopic caging mechanism, or in the
framework of MCT. MCT assumes that the dominant stress
(or force density) is specified by density fluctuations. In a
supercooled state, density fluctuations with wavelengths
near the first peak of the structure factor (~ cage size)
become the longest-lived modes. Thus, their nonlinear
(jamming) interactions are considered to play a crucial
role in the slowing down of dynamics and the resulting
transport anomalies. To elucidate the basic feature of 1(k)
in a MCT picture, we compute 1(k) of a one-component
hard-sphere system rather than a binary soft sphere system,
by using the ideal MCT [27,28]. Here the structure factor is
evaluated by the Percus-Yevick theory [3]. As can be seen
in Fig. 4(b), even in a supercooled state, (k) approaches
the macroscopic value 7(0), when the wavelength becomes
comparable to the cage size. This is a direct consequence
of the fact that in MCT there is no important length scale
beyond the cage size. This means that the viscosity anom-
aly is really a particle-scale phenomenon in MCT.
However, this strongly contradicts our findings [compare
Fig. 4(b) with Fig. 2(a)]. In relation to this, we stress the
following point. In MCT the generalized Maxwell relation
n(k) = G(k)7,(k) qualitatively holds even up to the parti-
cle scale. Here G(k) and 7,(k) are the k-dependent shear
modulus and a-relaxation time, respectively [29]. This is
simply because in MCT n(k) ~ 1(0), G(k) ~ G(0), and
7,(k) ~ 7,(0) for kd < 1. On the other hand, our results
clearly show that the Maxwell relation is apparently vio-
lated at a finite wave number (k¢&,, = 1) [30].

Furthermore, in MCT the relaxation of the dominant
stress is entirely determined by the dynamics of the scalar
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FIG. 4. MCT results: (a) the density autocorrelation function
D(k, t) at k = 6.25 for several volume fractions ¢ = ¢, X (1 —
107/3), where ¢.=0516 and n=12---; (b) the
k-dependent shear viscosity n(k, ). n(k, ¢)/1(0, $) can be
collapsed onto a single curve as shown in the inset.
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density field. Thus, the shear-stress autocorrelation should
decay with the longest (longitudinal) relaxation time in all
directions: isotropic decay. Thus, MCT cannot reproduce
the strong angular dependence of the relaxation of H(k, 1)
shown in Figs. 3(a)-3(c). These discrepancies may be
directly related to the failure in describing the breakdown
of the Stokes-Finstein relation by MCT. Recently there
have been several efforts to incorporate DH into MCT
[31,32]. However, we speculate that a framework beyond
the scalar-field description may be necessary for explain-
ing the decoupling between longitudinal and transverse
modes in a supercooled liquid.

In the field of complex fluids, a MCT-like scalar-field
description is often not capable of describing the whole
aspects of complex viscoelastic phenomena: For example,
in polymeric liquids the (thermodynamic) osmotic stress
due to concentration fluctuations is not sufficient to de-
scribe complex mesoscopic dynamics. One should also
consider the (mechanical) viscoelastic stress that arises
from dynamic coupling between strain field and geomet-
rical conformation (bond-orientation, entanglement, etc.)
[33]. For entangled polymer solutions, a new length scale,
&6, sets in [16,17], which leads to a crossover from the
microscopic to macroscopic viscosity at k&, ~ 1 and
strong decoupling between longitudinal and transverse
dynamics for k&, > 1 [19,20], quite similarly to our
findings. This suggests that even in supercooled liquids
such a mechanical viscoelastic stress may play an essential
role in addition to the scalar density field. A promising
candidate of the origin of such a stress is a dynamical
conformation associated with DH [30].

In summary, in the light of the mesoscopic nature of the
viscous transport, our study suggests that a supercooled
liquid cannot be categorized into a simple liquid, but
should be regarded as a complex fluid with a mesoscopic
length scale: The spatiotemporal hierarchical structures
revealed here share many features common to those of
complex fluids. We emphasize that a macroscopic hydro-
dynamic description is valid only for k¢, << 1: For k&, >
1, the spatiotemporal hierarchical nature of a system domi-
nates the viscous transport properties. We note that the
nonlocal nature of the viscous transport may be key to
many unsolved problems, e.g., translational-rotational de-
coupling (the breakdown of the Stokes-Einstein relation)
and the origin of the slow 8 mode. We speculate that the
strong decoupling between the longitudinal and transverse
dynamics [see Figs. 3(a)-3(c)] is responsible for the
translational-rotational decoupling in a supercooled state
[34,35]. Microrheological measurements may provide im-
portant information on this problem [20,36]. We believe
that an approach from the physics of complex fluids may
shed new light on the very origin of slow dynamics asso-
ciated with glass transition.

We wish to thank Professors A. Onuki, R. Yamamoto,
K. Miyazaki, and Y. Nisikawa for their useful comments.
A.F. and H.T. acknowledge a grant-in-aid from JSPS

and MEXT, respectively.

[1] W. Go6tze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).

[2] K. Binder and W. Kob, Glassy Materials and Disordered
Solids (World Scientific, Singapore, 2005).

[3] J.P. Hansen and I.R. Macdonald, Theory of Simple
Liquids (Academic Press, Oxford, 1986).

[4] J.P. Boon and S. Yip, Molecular Hydrodynamics (Dover,
New York, 1991).

[5] For instance, the Stokes-Einstein relation amazingly holds
even at an atomic level [3,4].

[6] H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).

[7] M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

[8] M.M. Hurley and P. Harrowell, Phys. Rev. E 52, 1694
(1995).

[9] R. Yamamoto and A. Onuki, Phys. Rev. E 58, 3515 (1998).

[10] C. Donati et al., Phys. Rev. Lett. 80, 2338 (1998).

[11] N. Lacevi¢ et al., J. Chem. Phys. 119, 7372 (2003).

[12] H. Shintani and H. Tanaka, Nature Phys. 2, 200 (2006).

[13] R.G. Larson, The Structure and Rheology of Complex
Fluids (Oxford University Press, Oxford, 1999).

[14] A. Onuki, Phase Transition Dynamics (Cambridge
University Press, Cambridge, 2002).

[15] K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970).

[16] E. Brochard and P.G. de Gennes, Macromolecules 10,
1157 (1977).

[17] M. Doi and A. Onuki, J. Phys. II (France) 2, 1631 (1992).

[18] The viscoelastic length is usually much larger than the
static correlation length.

[19] A. Furukawa, J. Phys. Soc. Jpn. 72, 209 (2003); 72, 1436
(2003).

[20] A. Furukawa, J. Chem. Phys. 121, 9716 (2004).

[21] A marked k dependence in n(k) for k&, = 1 is essential
to connect transport properties between different length
scales [19,20].

[22] J. Kim and T. Keyes, J. Phys. Chem. B 109, 21 445 (2005).

[23] D.J. Evans, Phys. Rev. A 23, 2622 (1981); Mol. Phys. 47,
1165 (1982).

[24] W.E. Alley and B.J. Alder, Phys. Rev. A 27, 3158 (1983).

[25] R.D. Mountain, J. Chem. Phys. 102, 5408 (1995).

[26] The isotropic nature of our system allows us to choose a
Cartesian coordinate arbitrarily. Thus, for k = (k/+/2,
k/ V2,0) the longitudinal force is given by —i(k-
ok, ) = = (ik/2V2)(0 (k) + 0y, (k) + 20, (k) (% + 3),
while for k = (k,0,0), o,,(k, t) gives the purely trans-
verse force as —i(k - o(k)), = —iko ., (k)y.

[27] M. Fuchs et al., J. Phys. Condens. Matter 3, 5047 (1991).

[28] T. Franosch et al., Phys. Rev. E 55, 7153 (1997).

[29] In our molecular dynamics simulation, G(k) and 7, (k) do
not exhibit marked k dependence for ko, = 1 [30].

[30] A. Furukawa and H. Tanaka (unpublished).

[31] G.Biroli and J.-P. Bouchaud, Europhys. Lett. 67,21 (2004).

[32] L. Berthier et al., J. Chem. Phys. 126, 184 503 (2007).

[33] M. Doi and S.F. Edwards, Theory of Polymer Dynamics
(Oxford University Press, Oxford, 1986).

[34] F. Fujara et al., Z. Phys. B 88, 195 (1992).

[35] M.T. Cicerone and M.D. Ediger, J. Chem. Phys. 104,
7210 (1996).

[36] A. Furukawa et al., Phys. Rev. Lett. 102, 016001 (2009).

135703-4



