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It has been recently shown that the percolation transition is discontinuous in Erdős-Rényi networks and

square lattices in two dimensions under the Achlioptas process (AP). Here, we show that when the

structure is highly heterogeneous as in scale-free networks, a discontinuous transition does not always

occur: a continuous transition is also possible depending on the degree distribution of the scale-free

network. This originates from the competition between the AP that discourages the formation of a giant

component and the existence of hubs that encourages it. We also estimate the value of the characteristic

degree exponent that separates the two transition types.
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The Achlioptas process (AP) is a network evolution
process in which the number of vertices is fixed as N and
edges are added one by one at each time step following a
given rule that prevents the formation of a target pattern.
Recently, Achlioptas et al. [1] studied the percolation
transition (PT) for the Erdős-Rényi (ER) model [2] follow-
ing an AP rule, called the product rule (PR) in which the
formation of a giant component is discouraged. In their
study, the network was developed by choosing between
one of two randomly selected edges; the selected edge had
a lower value of the product of the size of the two compo-
nents that edge is joining. They found that the giant com-
ponent emerged suddenly at a percolation threshold pc,
and that the PT was first order. This transition pattern
differs drastically from the continuous PT occurring in
the conventional ER model. The transition is delayed as
pc � Lc=N � 0:88, larger than pc ¼ 1=2 for the conven-
tional ER model, where Lc is the number of edges added to
the system up to the transition point. More recently, Ziff [3]
found the same first-order transition in the two-
dimensional bond percolation clusters under AP. A similar
explosive transition pattern has also been observed in a
jamming transition model of Internet packets [4].

Here, we study the PT in a model scale-free (SF) net-
work under the AP rule. SF networks contain heteroge-
neous degrees, and their distribution follows a power law,
PdðkÞ � k��. To construct artificial SF networks, a sto-
chastic model called the Chung and Lu (CL) model [5] is
used. Similar to the ER model and the static model [6], the
CL model starts with a fixed number of N vertices indexed
i ¼ 1; . . . ; N. Then, a vertex i is assigned a weight of wi ¼
ðiþ i0 � 1Þ��, where � 2 ½0; 1Þ is a control parameter,

and i0 / N1�1=2� [7] for 1=2<�< 1 and i0 ¼ 1 for �<
1=2. Then, two different vertices (i, j) are selected with
their probabilities equal to the normalized weights,
wi=

P
kwk andwj=

P
kwk, respectively, and an edge is added

between them unless one already exists. This process is
repeated until pN edges are created in the system. The
obtained network is SF in degree distribution with the

exponent � ¼ 1þ 1=�. Henceforth, we will use the CL
model to study the percolation transition of scale-free net-
works in PR (SFPR).
The mechanism by which a giant component in PT

forms in conventional SF networks with 2< �< 3 is
different from that in ER networks. In an ER network, as
the number of edges L ¼ pN increases in the system,
multiple isolated small components are created and merged
together. This process continues up to the finite percolation
threshold pc where a single giant component emerges
through an abrupt coalescence of those small components.
On the contrary, in SF networks with 2< �< 3, the per-
colation threshold is zero in the thermodynamic limit.
Thus, the giant component initially develops with the
largest degree vertex as the seed, and grows continuously
by aggregating small-size components. The development
and growth of the giant component is the result of rela-
tively high probability of a vertex being chosen in the giant
component [8]. In the SFPR, on the other hand, two vertex
pairs are selected according to the aforementioned weights.
During the network growth, if two vertices get selected
from the same component, an edge is created between
them with no change in component size. Thus, the exis-
tence of a giant component implies that even under AP, the
probability of growing the giant component is very high.
This leads us to ask the following question: what is the
impact of introducing the AP rule on the nature of the
percolation transition in SF networks?
We obtain the following results by performing extensive

numerical simulations for the SFPR model: There exists a
tricritical point �c, estimated to be between 2:3< �c <
2:4, such that when 2< � � �c, the transition point pc is
zero in the thermodynamic limit, and the PT is second
order as in conventional SF networks. When � > �c, how-
ever, pc is finite, and the transition is first order. The jump
in the giant component size at the first-order transition
point decreases as pc decreases. The phase diagram is
depicted in Fig. 1. In finite-size systems, however, pcðNÞ
is finite even when � < �c and the transition is first order.
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In addition to this new feature, many other unexpected
behaviors emerge.

Specifically, numerical simulations are performed for
the CL model with the PR. At each time step, two candi-
date edges, e1 and e2, are drawn from the system with
respective probabilities as described previously, and added
is the edge that minimizes the product of the component
sizes on each end of the respective edge. Depending on the
type of the edge, there are three possible cases: (i) both
edges e1 and e2 are intercomponent ones, (ii) one edge e1 is
intracomponent, and the other e2 intercomponent, or
(iii) both edges e1 and e2 are intracomponent. Two sub-
cases of (iii) are shown in (iii-a) and (iii-b) of Fig. 2. For
each case, the edge added to the system is selected as
follows: In (i), the edge that minimizes the product of the

component sizes on each side of respective edge (PR) is
chosen. In (ii), the edge e2 is chosen, leading to no change
in component size. For (iii), an edge is chosen randomly
between the two. A schematic picture of the selection rule
in the AP is depicted in Fig. 2. Henceforth, � � 1þ 1=� is
a control parameter of simulation: We find that in SFPR, �
is not the resulting degree exponent, unlike in the conven-
tional CL model (see below).
We measure the fraction of vertices in the giant compo-

nent, denoted as G, averaged over 102 � 104 different
network configurations, as a function of p. We define the
PT point, denoted by pcðNÞ, in a system of finite size N as
the point at which the local slope of G is maximal. This
position is consistent with the peak position of the suscep-
tibility defined below.We also define the discontinuity ofG
[9], denoted as �G, as the height of the intersection point of
two tangent lines, one from the rapidly increasing transi-
tion region and the other from the smoothly increasing
curve after the jump. Indeed, G shows the first-order phase
transition at pcðNÞ in finite-size systems as shown in Fig. 3.
As the parameter � ! 2 (equivalently � ! 1), the transi-
tion point pcðNÞ and the jump �G decrease. To understand
the behavior of GðpÞ in the N ! 1 limit, numerical simu-
lations are performed for various system sizes in Fig. 4. We
find that there exists a critical value �c, estimated to be
between 2:3< �< 2:4, such that for � < �c, pcðNÞ de-
creases to zero as N increases [Fig. 4(a)] in a power-law

manner pcðNÞ � N�1=� with � > 0 [inset of Fig. 4(a)], and
thus pcðN ! 1Þ ! 0. The exponent � depends on �. For
example, 1=� � 0:15ð1Þ for � ¼ 2:2. The jump �G at

pcðNÞ decreases to zero as �G� N��=� , where the expo-
nent � also depends on �. For example, �=� � 0:23ð1Þ for
� ¼ 2:2 [Fig. 4(b)]. Thus, we conclude that the PT is
continuous in the thermodynamic limit, and Achlioptas
suppression is not effective in this case. When � > �c,
however, pcðN ! 1Þ converges to a finite value [inset of
Fig. 4(d)]. The estimated values of pcðNÞ for different Ns
and pcð1Þ are listed in Table I. In finite-size systems,

pcðNÞ � pcð1Þ � N�1=� . For example, estimated value
of the exponent 1=� ¼ 0:29ð1Þ for � ¼ 2:8. � � 1 indi-
cates that the first-order transition for � ¼ 2:8 is not criti-
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FIG. 1 (color online). Phase diagram of the percolation tran-
sition in the SFPR network. Here, p ¼ L=N is the edge density,
and � is the control parameter corresponding to the degree
exponent of non-PR SF networks. A second-order (first-order)
PT is represented by a solid line (dashed line). The tricritical
point is denoted as ‘‘TP.’’

FIG. 2 (color online). A schematic diagram of the selection
rules in AP for cases (i)–(iii) defined in the text. In case (i), two
intercomponent edges are drawn at random, and one of them is
chosen to be connected according to the product rule (PR). In
case (ii), one edge is intercomponent and the other edge is
intracomponent. The latter is chosen. In cases (iii-a) and
(iii-b), two intracomponent edges are drawn, and one is ran-
domly chosen to be connected.
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FIG. 3 (color online). The fraction G of the giant component
versus the edge density p for (a) the CL model under AP, and
(b) the conventional CL model. Data were obtained for net-
works with various control parameters � [2.2, 2.4, 2.6, 2.8, 3.0,
and 4.0 from left to right]. System size was fixed at N ¼ 107.
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cal [10]. To check the nature of the PT in the thermody-
namic limit, we denote L0 ¼ p0N and L1 ¼ p1N as the

number of edges at which the value ofG reaches 1=
ffiffiffiffi
N

p
and

0.3, respectively. We find that there exists a scaled quantity

�=N0:8 with � � L1 � L0, which converges to a finite
value as N ! 1 for � ¼ 2:8 [Fig. 4(e)]. The scaling factor
N0:8 <N indicates that the transition is of first order [1]. It
is interesting to note that the susceptibility, defined as � �P

ss
2ns with ns, the number of s-size components per node,

and the sum excluding the largest component, diverges as
N ! 1 even when the transition is first order. We find that

�max � �½pcðNÞ� � N�=� with �=� � 0:4 and 0.7 for � ¼
2:2 and 2.8, respectively, shown in Figs. 4(c) and 4(f).
Interestingly, �=� � 0:7 remains unchanged for � ¼ 4:0
and 1.
Since the second-order and the first-order transitions

meet at �c, �c is a tricritical point. To estimate the position
of �c, we measure successive slopes of the function pcðNÞ
with respect to N for several values of � and plot them as a
function of 1=N in the inset of Fig. 5. We find that the
successive slopes decrease to zero for � ¼ 2:4 and 2.5,
while they converge to a finite negative value for � ¼ 2:3.
Thus, we conclude that the tricritical point is between
2:3< �c < 2:4, shown in Fig. 5.
The relative frequencies of occurrence of the three cases

of (i)–(iii) of Fig. 2 during the evolution is related to the
degree effectiveness of AP. We find that the case (i) occurs
dominantly with a probability nearly one during the period
p < pcðNÞ, in which an attached edge connects two iso-
lated components, merging them into a larger component.
Above pcðNÞ, it decays rapidly since a giant component is
already there. The cases (ii) and (iii) begin to occur when p
is close to pc. Next, we examine the component-size
distribution during the evolution. In early time regime p �
pcðNÞ, the component-size distribution exhibits an expo-
nential decaying behavior. As p is increased, the distribu-
tion develops a hump in a large-size region, which is made
through the coalescence of small-size components, result-

TABLE I. Estimated percolation threshold pc values for finite
(N1 ¼ 106 and N2 ¼ 107) and infinite system sizes, and the
obtained degree exponents �0 at pcð1Þ for various �. Errors in
the last decimal points are given in parentheses.

� pcðN1Þ pcðN2Þ pcð1Þ �0ðpcÞ
2.2 0.33(1) 0.23(1) 0 2.8(1)

2.3 0.42(1) 0.33(1) 0 3.0(1)

2.4 0.49(1) 0.42(1) 0.18(1) 3.1(1)

2.6 0.60(1) 0.57(1) 0.52(1) 3.5(1)

2.8 0.68(1) 0.66(1) 0.65(1) 3.8(1)

3.0 0.73(1) 0.73(1) 0.72(1) 4.2(1)

4.0 0.83(1) 0.83(1) 0.83(7) 6.3(1)
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FIG. 5 (color online). Plot of pcðNÞ versus 1=N for � ¼ 2:3
(�), 2.4 (e), and 2.5 (h). Error bars in each data point are within
symbol sizes. Inset: plot of successive slopes of pcðNÞ versus
1=N. For � ¼ 2:4 (e) and 2.5 (h), the successive slopes
approach zero, indicating that pcð1Þ is finite. For � ¼ 2:3
(�), the successive slopes approach a finite negative value,
indicating pcð1Þ ¼ 0.

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

G

p

λ=2.2

(a)

10-2

10-1

100

10-8 10-7 10-6 10-5 10-4 10-3 10-2

δ G

1/N

λ=2.2

(b)

100

101

102

103

 0  0.2  0.4  0.6  0.8  1

χ

p

λ=2.2

(c)

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

G

p

λ=2.8

(d)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0×100  2×107  4×107  6×107

∆/
N

4/
5

N

λ=2.8

(e)

100

101

102

103

104

 0  0.2  0.4  0.6  0.8  1

χ

p

λ=2.8

(f)

10-1

100

10-9 10-6 10-3
p

c(
N

)
1/N

10-1

100

10-9 10-6 10-3

p
c(

N
)

1/N

102

103

104

10-9 10-6 10-3

χ m
ax

1/N

102

104

106

10-9 10-6 10-3

χ m
ax

1/N

FIG. 4 (color online). (a) Same plot as Fig. 3 but for various
system sizes N ¼ 105, 106, and 107, from right to left. Control
parameter � ¼ 2:2. Inset: Plot of pcðNÞ versus 1=N. The solid
line is a guideline with slope 0.15, indicating that pcð1Þ ! 0.
(b) Plot of the jump �G around pcðNÞ versus 1=N. Solid line is a
guideline with slope 0.23. (c) Susceptibility versus p. Inset: The
peak value versus 1=N. (d) Same as (a) for � ¼ 2:8. Inset: Same
as the inset of (a) for � ¼ 2:8. Solid line is a guideline with slope
0.0, indicating that pcð1Þ is finite. (e) Scaling plot of �=N0:8

versus N for � ¼ 2:8, where �=N � p1 � p0 with p1 and p0

being the edge densities when the fractions of the giant compo-
nent reach G ¼ 0:3 and G ¼ N�1=2 for the first time, respec-
tively. (f) Same as (c) for � ¼ 2:8. Error bars in each data point
are within symbol sizes.
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ing in the abundance of large-size components. As p just
passes pc, these components finally condense into one
giant component, resulting in the disappearance of the
hump and a power-law distribution of component sizes.
This behavior proves that the self-organization process
operates during the very short transition period even under
the action of AP.

Unexpectedly, the tricritical point �c is located in the
range (2.3,2.4). To understand the underlying mechanism,
we measured the degree distribution of the SFPR network.

The degree distribution follows a power law PdðkÞ � k��0
.

Yet, the exponent �0 varies, depending on the edge density
p for a given �, as shown in Fig. 6. We find that �0
decreases as p increases. Numerical values of �0 obtained
at pcðN ¼ 107Þ as a function of � are listed in Table I.
Since the degree exponent �0 obtained at pcðNÞ turns out to
be insensitive to system size N (the inset of Fig. 6), �0 at
pcðN ¼ 107Þ may be regarded as the one at pcð1Þ, even
though �0 is not defined at p ¼ 0. Interestingly, when � <
�c, �

0 � 3. Thus, we can assume that pcð1Þ ¼ 0 when
�0 � 3 at pc as long as � < �c. This result is reminiscent of
the well-known fact that pcð1Þ ¼ 0 when � � 3 in con-
ventional uncorrelated SF networks.

In summary, we have studied the percolation transition
in the evolution of SF networks governed by AP. The
nature of the phase transition changes from continuous to
discontinuous as the degree-exponent parameter � is tuned
past a tricritical value �c (Fig. 1). This phenomenon origi-
nates from a competition between AP that discourages the
formation of a giant component and the existence of hubs
in SF networks that encourages it.
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Note added.—Shortly after the submission of this Letter,

we became aware of a similar work [13] under preparation.
It uses a different model from ours, the configuration
model, exhibiting similar properties with some differences.
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FIG. 6 (color online). Plot of the degree distribution PdðkÞ of
the SFPR network when � ¼ 2:2. We find that the degree
exponent �0 � 2:8 when p ¼ 0:234 � pcðNÞ (�), and �0 �
2:25 when p ¼ 0:8 (e). The degree distribution of the conven-
tional CL network at p ¼ 0:234 is drawn (h) for comparison.
The system size is fixed at N ¼ 107. Inset: plot of the degree
distributions of the SFPR network at pcðNÞ for various system
sizes N ¼ 105, 106, and 107 from left to right, showing the
distributions’ insensitivity to system size. Data have been shifted
vertically for clear view in the main panel, and for easier
comparison in the inset.
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