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We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models with

enhanced SUðNÞ symmetry. In dramatic contrast to SU(2) magnetism, more than two spins are required to

form a singlet. On the square lattice, the classical ground state is highly degenerate and magnetic order is

thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with topological order and

Abelian fractional statistics. We discuss its experimental detection. Chiral spin liquids with non-Abelian

anyons may also be realizable with alkaline earth atoms.
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An exciting thread in the study of strongly interacting
cold atomic gases is the notion that such systems can be
used as quantum simulators of strongly correlated materi-
als [1]. Simple model systems can be engineered with a
high degree of control, and studied as analogs of solid state
materials. On the other hand, in some cold atom systems
the simplest realizations of strong correlation physics may
have no solid state analog. This raises the exciting prospect
of systems and phenomena that are thus far unanticipated.

Recently, it has been argued that fermionic alkaline earth
atoms (AEAs) in optical lattice potentials can realize a
variety of model correlated systems, many of which lack
solid state analogs and are relatively unexplored theoreti-
cally [2]. Fermionic AEAs have nuclear spins as large as
I ¼ 9=2 for 87Sr; due to lack of hyperfine coupling with the
electronic ground state (1S0), the nuclear spin is essentially
decoupled from the electronic degrees of freedom. This
decoupling, also present in the lowest electronic excited
state (3P0), implies that the s-wave scattering length is

independent of nuclear spin, and leads to an enlargement
of the spin rotation symmetry from SU(2) to SUðNÞ, where
N ¼ 2I þ 1 [2,3]. This observation, together with recent
progress in and prospects for manipulating AEAs [4],
opens the door to experimental studies of SUðNÞ magne-
tism. We shall see here that the enlarged symmetry has
striking physical consequences.

In this Letter, we study the simplest antiferromagnetic
square-lattice SUðNÞ Heisenberg model that can be real-
ized with AEAs in the electronic ground state. We find that,
as in some geometrically frustrated systems, for N � 3
magnetic order is underconstrained and there is a large
degeneracy of classical ground states. Here, the degeneracy
arises not from geometrical frustration but from the struc-
ture of the SUðNÞ exchange interaction, and is present on
any lattice for large enough N. This result indicates that
magnetic order is unlikely, so we focus instead on non-
magnetic ground states, which are controllably accessed in
a large-N limit, where we find the ground state is the long-
sought chiral spin liquid (CSL) [5–8]. The CSL sponta-

neously breaks time-reversal (T ) and parity (P ) symme-
tries, and is closely related to fractional quantum Hall
liquids, sharing their remarkable topological properties [9].
Specifically, we consider the large-U (insulating) limit

of a Hubbard model with m<N atoms per site. N � 10
can be realized with 87Sr by populating a subset of the
nuclear spin levels [2]. For m ¼ 1, the spin at each site
transforms in the fundamental representation of SUðNÞ,
and N sites are needed to form a singlet, a crucial differ-
ence from SU(2) magnetism. While m ¼ 1 best avoids
three-body losses, we also consider m ¼ N=k for integer
k � 2; in this case k sites are needed to form a singlet. Such
models, which may be realizable form not too large, allow
us to consider a solvable large-N limit, where N is taken
large with k fixed. This is a large-N generalization of the
model with m ¼ 1 and N ¼ k, as the number of sites
needed to form a singlet is preserved.

It is convenient to define the model in terms of fyr� (� ¼
1; . . . ; N), which creates a fermion on the square-lattice site
r. The Hamiltonian is

H ¼ J
X

hrr0i
S��ðrÞS��ðr0Þ; S��ðrÞ ¼ fyr�fr�; (1)

where the sum is over nearest-neighbor bonds, and J is the

exchange energy. We have a local constraint, fyr�fr� ¼ m.
Study of correction terms arising away from the large-U
limit will be deferred to future work.
Most studies of SUðNÞ magnetism have focused on

models where two sites can be combined to form a singlet.
The most-studied cases are the k ¼ 2 model defined above
[10], and models defined by placing conjugate representa-
tions on the two sublattices of a bipartite lattice [11].
Spin-3=2 alkali fermionic atoms exhibit an enlarged
SO(5) symmetry, where also two sites can be combined
to form a singlet [12]. Finally, we note that the models we
discuss here have been solved exactly in one dimension for
m ¼ 1 [13]. In two dimensions, the N ¼ 4, m ¼ 1 model
has been studied in the context of orbitally-degenerate
Mott insulators, although there the SU(4) symmetry re-
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quires substantial fine-tuning [14]. On the cubic lattice,
plaquette states [see Fig. 1(c)] have been studied using a
quantum plaquette model [15].

Semiclassical limit.—The semiclassical limit considered
here is a generalization of the large-S limit of SU(2)
magnetism. We consider a generalized model where the
spin at each site transforms in the SUðNÞ irreducible rep-
resentation labeled by the Young tableau with one row and
nc columns [11]. This representation is the symmetric
combination of nc fundamental representations, and in
the SU(2) case is a spin-S spin (S ¼ nc=2).

We can define this model in terms of fermion operators

fyr�a, where a ¼ 1; . . . ; nc is a ‘‘color’’ index. On every site
we place nc fermions, and antisymmetrize over their color

indices. Defining S��ðrÞ ¼
P

af
y
r�afr�a, the Hamiltonian

is identical in form to Eq. (1). We define the coherent state

jzi ¼ ðz�fy�1Þ . . . ðz�fy�ncÞj0i, which is parametrized by the

N-component complex spinor z (zyz ¼ 1) [11]. Since z !
ei�z only changes jzi by a phase, the overall phase of z is
unphysical and coherent states are labeled by points in the
manifold CPN�1, which has dimension 2ðN � 1Þ. In the
limit nc ! 1, the state

Q
rjzri is an eigenstate, and the

energy is E ¼ Jn2c
P

hrr0ijzyr zr0 j2 þOðncÞ.
The energy is minimized for zyr zr0 ¼ 0 on nearest-

neighbor bonds. For N > 2, we immediately see a signifi-
cant difference from SU(2) magnetism: knowing zr does
not uniquely determine the neighboring zr0 that minimizes
the energy. This leads to an extensive degeneracy of clas-
sical ground states. To see this, we estimate the dimen-
sion D of the ground state manifold [16]. Letting Ns be the
number of lattice sites, the total dimension of all the

CPN�1 spins is 2NsðN � 1Þ. On every bond, zyr zr0 ¼ 0
provides two constraints, for a total of 4Ns constraints.
Treating the constraints as independent leads to a lower
bound: D � 2NsðN � 3Þ. For N ¼ 3, where this bound is
not helpful, it can be shown by explicit construction of
ground states that D / Ns.

Such extensive degeneracy is a hallmark of geometri-
cally frustrated systems, where underconstraint emerges
from the inability to simultaneously satisfy a set of com-
peting interactions. A crucial physical consequence is a
strong, even complete, suppression of magnetic order [16].

The semiclassical limit is biased towards magnetic order,
and since it is suppressed even there, we expect that the
present models lack magnetic order altogether for nc ¼ 1,
the case of interest for AEA Mott insulators.
Large-N limit.—Returning to the model Eq. (1), mag-

netically disordered ground states can be controllably
studied in the limit N ! 1, where m ¼ N=k, J ¼ J =N,
and k and J are held fixed. This limit was studied for k ¼
2 in [10], where the ground state is a valence-bond solid
(VBS) [17]. Here, we find the k ¼ 3, 4 ground states break
lattice symmetry and are analogous to the VBS (Fig. 1).
For 5 � k � 10 we present evidence that the ground
state is the CSL, and also discuss low-lying competing
states. We conjecture that the CSL is the ground state for
all k � 5.
The mathematical structure of the large-N limit is the

same as for the k ¼ 2 case already studied. The problem
reduces to finding the ground state of the mean-field

Hamiltonian HMFT ¼ ~HMFT þ
P

r�rðm� fyr�fr�Þ,
where ~HMFT ¼ ðN=J ÞPhrr0ij�rr0 j2 þH K and H K ¼P

hrr0ið�rr0f
y
r�fr0� þ H:c:Þ. This is required to satisfy the

self-consistency conditions

�rr0 ¼ �J
N
hfyr0�fr�i (2a)

m ¼ hfyr�fr�i: (2b)

The field �rr0 arises from decoupling the exchange inter-
action on each bond, and �r arises from a Lagrange multi-
plier field implementing the constraint of m fermions per
site. Without loss of generality, we assume

P
r�r ¼ 0. A

set of (�rr0 , �r) satisfying Eq. (2) is a mean-field saddle
point. The saddle-point energy EMFT is an extremum with
respect to variations of the fields, but not necessarily the
global minimum. The task at hand is to find the lowest
energy saddle point as a function of k.
For k ¼ 2, Rokhsar established a lower bound on EMFT,

and showed that, on any lattice where a dimer covering is
possible, any dimer state such as that shown in Fig. 1(a)
saturates the bound [17]. The leading corrections in the
1=N expansion then select an ordered VBS configu-
ration from among the various dimer states [11]. It is
straightforward to extend Rokhsar’s bound to general k.

First, for a given saddle point, using Eq. (2b), EMFT ¼
h ~HMFTi � ~EMFT, the ground state energy of ~HMFT. A
lower bound on ~EMFT is easily obtained following
Ref. [17]. For k ¼ 2, one divides the spectrum of H K in
half; in general, one divides the spectrum into occupied
and unoccupied levels. On the square lattice, one finds
EMFT � �½ðk� 1ÞNJNs�=2k2.
A stricter lower bound can be established for bipartite

lattices, where the spectrum of H K is symmetric about
zero energy. We divide the spectrum into the sets L (oc-
cupied levels), U (image of L under � ! ��), and M
(remaining levels). An analysis similar to that of Ref. [17]
shows that, on the square lattice,

(b)(a) (c) 0

00

0π

π

FIG. 1. Large-N dimer and plaquette ground states for
k ¼ 2 (a), k ¼ 3 (b) and k ¼ 4 (c). �rr0 has constant magnitude
on the dark bonds and is zero on the others. For k ¼ 3 (k ¼ 4),
the phase of �rr0 is chosen so that the flux through each plaquette
is � (zero). The patterns shown are not necessarily those selected
by 1=N corrections.

PRL 103, 135301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

135301-2



EMFT � �NJNs=4k: (3)

For k > 2 this bound is stricter than that above, and is
saturated if and only if

P
r�r~nr ¼ 0, L (U) contains only

the constant energy �� (þ�), and M contains only zero
energy levels. Here, ~nr is the average fermion number
calculated in the ground state of H K.

For k ¼ 3, 4 the bound is saturated by the plaquette
states (Fig. 1). In each case 1=N corrections are expected
to select an ordered configuration, and the large-N ground
state for k ¼ 3, 4 is analogous to the k ¼ 2 VBS. It is
impossible to saturate the bound for k > 8: the large-N
ground state energy of the two-site problem is �NJ =k2,
which gives the bound EMFT � �2NJNs=k

2, stricter than
Eq. (3) for k > 8. Even for 5 � k � 8, the conditions
needed to saturate Eq. (3) are very restrictive and we
conjecture they cannot be satisfied.

Below, we present evidence that the CSL is the large-N
ground state for 5 � k � 10. The CSL saddle point has
�r ¼ 0 and j�rr0 j ¼ �, with the phase of �rr0 such that the
flux through each square plaquette is 2�=k. This results in
a fermion band structure with k bands, where only the
lowest band is filled, and for k � 3 it is separated from
the others by a gap. This mean-field state is a lattice integer
quantum Hall state: there is a quantized Hall conductance
of N, where the (fictitious) fermion charge and Planck’s
constant have been set to unity [18].

To determine the lowest-energy saddle point for 5 �
k � 10, in addition to explicit construction of saddle
points, we implemented a numerical self-consistent mini-
mization (SCM) algorithm. The algorithm begins with a
random choice of �rr0 , and self-consistently iterates
Eq. (2a), while choosing �r at each step to satisfy
Eq. (2b). We allowed �rr0 and �r to vary within a given
unit cell embedded within a larger system (with periodic
boundary conditions). It can be proven that SCM converges
to a local minimum of the energy. For 5 � k � 8, we
studied all rectangular unit cells with k2 or fewer sites,
excluding cells of unit width. For each cell, we ran the
SCM procedure on at least 30 (in some cases more than
500) different sets of random initial conditions. The CSL
was the lowest energy state found (Table I). For k ¼ 9, 10,
less extensive application of SCM also found no states
below the CSL in energy.

We also find locally stable competing states, some only
slightly higher in energy than the CSL (Table I). The
competition between CSL and these states will need to
be resolved by going beyond the large-N limit, and, ulti-
mately, by experiments. The lowest such states found can
be viewed as inhomogeneous versions of the CSL. For k ¼
5, a 2� 2 ordering pattern is superimposed on an average
2�=5 flux per plaquette. For k ¼ 6, 7, 8, the CSL divides
into domains. As long as the CSL remains stable to in-
homogeneity (e.g., the domain wall energy is positive),
these states will not be ground states. Therefore, we also
searched for the lowest competing states that cannot be
viewed as inhomogeneous CSLs. For k ¼ 5, 6, we find

stripe states (Fig. 2) that break various lattice symmetries
but preserve T . For k ¼ 7, 8, we find a distinct CSL with
2�=2k flux per plaquette.
Properties of CSL.—The CSL is characterized by both

its broken symmetries and topological order. T and P
breaking is signaled by a nonzero spin chirality hC123i �
0. Here, C123 ¼ iðP123 � P321Þ is the spin chirality of lat-
tice sites 1, 2, 3, and P123 the operator that cyclically
permutes the spin quantum numbers on those sites [6].
Understanding topological order requires going beyond

the mean-field description. It is important at this stage to

note that fyr� does not create an atom. Instead it creates a
spinon, which carries the spin but not the conserved atom
number. The most important fluctuations about the saddle
point are in the phase of �rr0 � h�rr0 ieiarr0 , where arr0 is the
spatial component of a fluctuating U(1) gauge field
coupled to the spinons. The time component of the gauge
field arises from the fluctuations of�r. The gapped spinons
can be integrated out to obtain a Chern-Simons (CS)
effective action for the gauge field, Seff ¼ ðN=4�Þ�R
dtd2ra����	@�a	, where the coefficient is determined

by the mean-field Hall conductance. The CS term is re-
sponsible for the topological properties of the CSL [9]. It
converts spinon excitations into anyons with statistical
angle �þ �=N. Moreover, its presence implies the spi-
nons are deconfined and propagate freely, and the CSL thus
exhibits quantum number fractionalization. For a system
with an edge, there are gapless chiral edge modes. Finally,
the ground state degeneracy on a surface of genus g is 2Ng,
where the factor of 2 arises from the spontaneous T
breaking.

TABLE I. Energies of CSL and competing states, in units of
NJNs ¼ N2JNs, for 5 � k � 8. ICSL is the lowest-energy
inhomogeneous CSL that was found. LC is the lowest competing
state that cannot be interpreted as an inhomogeneous CSL. Note
that the energy difference between CSL and LC is larger for k ¼
7, 8 than for k ¼ 5, 6.

k CSL ICSL LC

5 �0:043080 �0:043070 �0:042987
6 �0:033069 �0:03299 �0:032961
7 �0:026130 �0:02597 �0:025730
8 �0:021138 �0:02102 �0:020897

FIG. 2. Lowest-energy competing state for k ¼ 6 (the k ¼ 5
state has a similar pattern). The lattice is covered by stripes, of
which one is shown. The shading of bonds represents j�rr0 j,
interpolating between the maximum j�rr0 j (black), and j�rr0 j ¼
0 (white). Some regions enclose � flux, as indicated.
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Experimental detection.—The distinct features of the
states discussed here can be split into two categories:
straightforward ones associated with the spin gap and
broken symmetry, and, for the CSL, more subtle properties
having to do with the presence of topological order. A
number of well-developed experimental techniques can
be employed to detect the features of the first type.
Radio-frequency spectroscopy can be used to see the
presence of the gap [19]. One can measure spin-spin
correlation via noise correlations to see the absence of
order [20]. The VBS-analog states for k ¼ 3; 4 could be
detected by adiabatically merging groups of sites into a
single site, followed by application of bandmapping tech-
niques [21]. To detect T breaking, one can superimpose a
second system of fermions (3P0 alkaline earths [2]) or

bosons (alkali atoms), that couples to the CSL atoms via
spin-spin interaction. By symmetry, this coupling will
induce an effective orbital magnetic field for the second
system. For bosons, this field will induce vortices, and for
fermions it will lead to detectable changes of the energy
spectrum.

Topological order detection is more challenging.
Because of the chiral edge modes, a disturbance of the
spins near the system edge will propagate around the edge
with a well-defined velocity and direction, which could
potentially be detected. Returning to the Hubbard model,

the CSL will exhibit spin-charge separation. Letting cy�
create an atom, there will be a particle carrying the atom

number but not the spin, created by by ¼ cy�f�. The b
particle can be thought of as a bound state of an atom and a
spinon, and has fractional statistics with angle �=N. These
expectations can be formalized using a slave-rotor treat-
ment of the Hubbard model [22]. Because the spinon does
not couple directly to a scalar potential, lowering the
optical potential at a lattice site can localize a b particle,
the fractional statistics of which could potentially be
probed by techniques proposed in the context of quantum
Hall-like states in cold atomic systems [23].

To observe these characteristic properties, the tempera-
ture should be at most on the order of the gap � to the
lowest-energy quasiparticle excitations. Using the large-N
limit and boldly setting N ¼ k (i.e., one atom per site), in
the CSL we find �� J for both excitations of the gauge
field, and particle-hole excitations of the spinons. The
harmonic trapping potential determines the spatial extent
of m ¼ 1 Mott insulator; provided this is larger than the
characteristic scales of the CSL, its signatures can be
observed. Using the large-N limit, these length scales are
estimated to be at most a few lattice constants.

Finally, we note that the nc ¼ 2 model, discussed in the
context of the semiclassical limit, can be realized using one
ground state atom and one 3P0 atom on each site, depend-

ing on the sign of the Kondo exchange [2]. We have shown,
and will present in detail elsewhere, that this model can
support a CSL with a fluctuating U(2) gauge field, with a
SU(2) CS term at level N. This CSL supports non-Abelian

anyons, and is a candidate system for universal topological
quantum computation [24].
In summary, we studied square-lattice Mott insulators

that can be realized by fermionic AEAs in the electronic
ground state. We showed that magnetic order is unlikely,
found the CSL ground state in a large-N limit, and dis-
cussed its experimental detection.
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