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We present spectroscopic observation of an exceptional point or the transition point between mode

crossing and avoided mode crossing of neighboring quasieigenmodes in a chaotic optical microcavity of a

large size parameter. The transition to the avoided mode crossing was impeded until the degree of

deformation exceeded a threshold deformation owing to the system’s openness also enhanced by the shape

deformation. As a result, a singular topology was observed around the exceptional point on the

eigenfrequency surfaces, resulting in fundamental inconsistency in mode labeling.
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Dielectric optical microcavities are widely used in vari-
ous optoelectronics applications such as add or drop filters,
low-threshold microlasers [1], single-molecule sensors [2],
tunable optical frequency combs [3], and optomechanical
oscillators [4] owing to the high-quality factor Q of sup-
ported modes. In addition, asymmetric optical microcav-
ities have drawn much attention because they exhibit
directional output emission of high-Q modes. They can
also serve as a useful platform for investigating the corre-
spondence between quasieigenstates and associated cha-
otic classical dynamics in mesoscopic systems due to the
well-known one-to-one correspondence between the
Schrödinger equation and the Maxwell equation in billiard
problems [5]. Level dynamics of interacting modes have
also been studied for tailoring output directionality and
quality factors of associated modes [6,7].

One of the key issues related to the level dynamics is the
exceptional point (EP), a point in the parameter space of a
non-Hermitian Hamiltonian where the eigenstates of this
Hamiltonian coalesce [8–10]. Consequently, it has peculiar
properties such as eigenstate exchange, singular topology,
and a nontrivial geometric phase under cyclic parameter
variation around it. EPs have been observed in various
systems such as acoustic systems [11], atoms in optical
lattices [12], and complex atoms in laser fields [13]. In
coupled microwave cavities, the EP was studied in terms of
resonance mode distributions [14,15]. Existence of an EP
has been predicted for mesoscopic systems such as a
Rydberg atom in a strong magnetic field [16] and in a
stadium-shape microcavity [17], where classical chaos is
also important. Yet observation of EPs in these classically
chaotic systems has not been reported.

In a recent work of Ref. [18] in a chaotic optical micro-
cavity (COM), depending on the degree of cavity-shape
asymmetry we observed either mode crossing (MC) or
avoided mode crossing (AMC) when a system parameter

was scanned. However, we could not observe an EP, where
the transition between MC and AMC occurs in a two-
dimensional parameter space. We could not tell whether
two modes were crossing each other or if they were avoid-
ing each other with a gap smaller than our spectral resolu-
tion. Similar problems were also found with indistin-
guishable static envelopes of crossing and avoided crossing
modes in a high-Q toroidal microcavity [19].
In this Letter, we report the first observation of an EP in a

high-Q asymmetric microcavity or COM. Our experiment,
done in a single COM and not in coupled cavities as before
[14,15], was made possible by introducing an internal
parameter, a quasicontinuous variable in a semiclassical
regime of large size parameter, and is based on the fact that
two modes undergoing an AMC exhibit fundamentally
different output coupling signatures from those of MC
modes. Moreover, we elucidate the resulting singular to-
pology in the eigenenergy surfaces around the EP as an
inherent source of impossibility of consistent mode label-
ing in open mesoscopic systems.
Our COM is a two-dimensional microcavity formed by a

liquid jet of ethanol (refractive index m ¼ 1:361 at
610 nm) doped with rhodamine dye molecules and ejected
from a deformed orifice. The cavity boundary is approxi-
mately given by rð�Þ ’ að1þ � cos2�þ ��2 cos4�Þ in
the polar coordinates with a ’ 14:9� 0:1 �m and � ¼
0:42� 0:05 [20]. The details of our liquid-jet setup are
described in Ref. [21]. In short, the deformation parameter
� can be continuously varied from 0% to 26% by changing
the ejection pressure of the jet through the orifice. The size
parameter, defined as 2�ma=� with � the wavelength, is
about 190 for � ¼ 660 nm.
The COM was pumped by a cw argon-ion laser from the

side. Cavity-modified fluorescence (CMF) and lasing light
from the COM were measured with a grating spectrometer
by the scheme described in Ref. [22]. The polarization

PRL 103, 134101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

0031-9007=09=103(13)=134101(4) 134101-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.134101


direction for both pumping and detection was parallel to
the COM column [18,22,23]. Five different mode sequen-
ces recurring with an interval or a free spectral range of
about 2.3 THz were observed. Mode label l is assigned to
each mode sequence by the scheme explained in Ref. [18]
and the recurring modes in a mode sequence are indexed by
mode number n.

In Fig. 1, we observe l ¼ 2 and l ¼ 4modes undergoing
AMCs as a function of � at n ¼ 179, 180, 181, and 182,
respectively, indicating that the separation of two modes
can be adjusted continuously by changing � for a fixed n.
We also observe AMCs as we move horizontally for a fixed
� from one free spectral range to another. This is equiva-
lent to scanning the mode number n, a discrete internal
parameter. The relative frequency between l ¼ 2 and l ¼ 4
modes is changed by 0.083 THz or 3.6% (when they are
well apart) of their FSRs when n is shifted by 1. From the
locations of AMCs, ðn;�Þ ¼ ð179; 0:162Þ, (180, 0.167),
(181, 0.172), and (182, 0.176), we also find that the same
0.083 THz induced by n shift can be continuously scanned
by changing � by about 0.005. Therefore, by coarse scan-
ning of n shift for a fixed �, followed by a fine adjustment
of � within 0.005, we can bring any two modes together,
far beyond our spectrometer resolution (�50 GHz). An
exact definition of the internal parameter n is given below
when we discuss Fig. 4.

It was shown in Ref. [18] that the mode-mode interac-
tion in a COM can be described by a 2� 2 non-Hermitian
symmetric Hamiltonian. Its diagonal elements, given by
Ejðn; �Þ ¼ �jðn;�Þ � i�jð�Þ (j ¼ a, b) (with the Planck

constant h ¼ 1), are the eigenvalues of quasieigenmodes
when they are far apart, i.e., effectively uncoupled. The
imaginary part corresponds to the decay rate of the mode.
The symmetric off-diagonal element, denoted by Cð�Þ, is
the mode-mode coupling constant induced by the cavity-
shape asymmetry while its dependence on the internal

parameter n is negligible in the small spectral range of
interest.
The uncoupled quasieigenmodes of different radial

mode order have different FSRs. Thus, by shifting the
internal parameter n for a fixed � followed by a fine
adjustment of � as explained above, we can bring any
two uncoupled modes together and make the mode-mode
coupling come into play. In this case, the system has new

eigenvalues E� given by E� ¼ ðEa þ EbÞ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEa � EbÞ2=4þ C2

p

. When �a ¼ �bð¼ �0Þ, the new ei-

genvalues are given by E� ¼ �0 � ðC2 � �2�Þ1=2 � i�þ
with �� ¼ j�a � �bj=2. When C< ��, a splitting occurs
in the imaginary part of energy, corresponding to a MC in
the real part as we vary n. When C> ��, an AMC, a
splitting in the real part, would occur as n is varied. This
splitting is analogous to the mode splitting in coupled
cavities [14]. However, in our COM, the internal coupling
C is induced by the cavity-shape asymmetry, related to
chaotic ray transport between phase-space regions associ-
ated with the involved quasieigenmodes [18].
It should be noted that l ¼ 2 and l ¼ 4 modes in Fig. 1

correspond to the new quasieigenvalues E�, the result of
AMC between uncoupled j ¼ a, b quasieigenmodes. We
have systematically measured the sizes of AMC between
l ¼ 2 and l ¼ 4 modes for various cavity deformation
ranging from 0.14 to 0.23 as shown in Fig. 2(a). We can
also obtain the decay rates or the half linewidths of the
uncoupled states in the spectral region where AMC or MC
occurs as shown in Fig. 2(b). In fact, we have identified
from the spectrum evolution that these uncoupled states
have evolved from whispering gallery modes (WGMs)
with radial mode order l0 ¼ 1 and 4 in a circular cavity
as � is gradually increased [18]. Thus we can label these
uncoupled states j ¼ a, b above by the same l0 ¼ 1 and 4
as those of the original WGMs.
It is interesting to note that the observed��14s appear to

be well fit by a straight line with a �-axis offset, indicating
that a threshold deformation for the splitting exists. In
other words, the transition from MC to AMC is suppressed
up to a threshold deformation due to the openness which is
also enhanced by the system’s nonintegrability. This fea-
ture is quite interesting since the nonintegrability in an
open chaotic billiard induces both coupling and openness
(the latter summed up by decay rates) to grow. In our
example of l0 ¼ 1 and 4, the coupling (initially zero)
catches up the decay rates (initially finite) as � grows.
Contrarily, in a closed system, an AMC would occur as
long as �> 0, however small it is.
From the�-axis offset of a linear fit in Fig. 2(a), one may

expect that the two modes l0 ¼ 1 and 4 would undergo a
transition from AMC to MC, or vice versa, at �� 0:15.
However, the linewidth of these modes become much
narrower (<3 GHz) than our spectral resolution once � is
decreased below 0.16, and thus we cannot determine the
actual value of threshold deformation by simply noting the
disappearance of the splitting between the two modes.

FIG. 1 (color). Eigenfrequencies of l ¼ 2 (in orange) and l ¼
4 (in blue) modes as a function of the deformation � and the
internal parameter n. The magnified view shows the high reso-
lution spectra taken with a spectrometer of 0.05 nm resolution.
Green curves are Lorentzian fits.
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One can solve this rather inherent problem by realizing
that two modes undergoing a MC tend to maintain their
original linewidths whereas two modes undergoing an
AMC share a common linewidth given by the average
(�þ) of the original linewidths. This fundamental differ-
ence is then translated to substantially different output
coupling efficiencies for those two cases, as seen below.
Here the output coupling efficiency is a measure of relative
mode strength seen in the CMF spectrum. According to the
cavity quantum electrodynamics [24], the same amount of
fluorescence is directed to each cavity mode. However,
since the light in a mode (say, the jth mode) is also
absorbed by the cavity medium before it decays to the
outside, the relative mode strength is then given by the
ratio �j ¼ �j=ð�j þ �absÞ, the output coupling efficiency,

with �abs the absorption rate of the medium [25].
For l0 ¼ 1 and 4 modes, we have ð�1; �4; �absÞ � ð2�

10�6; 4� 10�3; 2� 10�5Þ THz and thus �1 � �abs � �4

in the spectral region where the transition is expected;
therefore, �1 � �1=�abs � 1 and �4 � 1. This indicates
that the l0 ¼ 1 mode is hardly visible while the l0 ¼ 4
mode has almost maximum visibility in the spectrum when
these two modes are well separated. This behavior can be
seen in Figs. 3(a)–3(c), where l0 ¼ 1modes are not visible
in the CMF spectra, whereas they become prominent when
the pump power is increased beyond its lasing threshold as
seen in Fig. 3(d).

When an AMC occurs (C> �� � �4=2), the two modes
form a doublet with each having the same decay rate of
�þ � �4=2. The output coupling efficiency of each is then
given by �þ=ð�þ þ �absÞ � �þ � 1. When the two modes
barely undergo an AMC, they appear to be overlapped into
a single peak in the spectrum with its output coupling
efficiency given by �AMC ¼ 2�þ � 2. This effect is clearly
observed in Fig. 3(a), where the peak at 664.5 nm is two
times larger than the other l0 ¼ 4modes, indicating that an
AMC takes place there between l0 ¼ 1 and 4 modes.

When the two modes undergo a crossing (C � ��), on
the other hand, the decay rate of each mode is modified

from its original value as �0
1 ¼ �þ � ð�2� � C2Þ1=2 and

�0
4 ¼ �þ þ ð�2� � C2Þ1=2. The resulting output coupling

efficiency when the two modes are overlapped is then
given by �MC ¼ �0

1=ð�0
1 þ �absÞ þ �0

4=ð�0
4 þ �absÞ �

�AMC, where the equality holds when C ¼ �� or at the
transition point. Particularly, if C � ��, we have �0

1 � �1

and �0
4 � �4, and the corresponding output coupling effi-

ciency is approximately given by �MC � 1. Therefore, the
transition from AMC to MC is signaled by a substantial
reduction of the output coupling efficiency from 2�þ, as
seen in Figs. 3(b) and 3(c), when two modes appear to be
overlapped.
We examined the output coupling efficiency (black

squares) when l0 ¼ 1 and 4 modes appear to be over-
lapped. We observed that this coupling efficiency starts
to deviate noticeably from 2�þ (red squares) as the defor-
mation parameter is reduced below 0.125 as shown in
Fig. 3(e). From this observation, we conclude that the
two modes undergo a transition from AMC to MC, or
vice versa, at �0 ¼ 0:125� 0:005.
A parameter-space point at which the transition from

MC to AMC takes place or E� states coalesce is the EP, a
topological singular point. The singular nature of the EP is
revealed when we examine the eigenfrequency surfaces of
l ¼ 2 and 4 modes in a n-� parameter space. The eigen-
frequency surfaces E�ðn;�Þ are constructed in the follow-
ing way. We first define reference frequencies as the
resonance frequencies of l0 ¼ 3 WGM in a circular cavity
whose round-trip length is the same as that of the COM
under investigation, as shown in Fig. 4(a). The spectrum is

FIG. 2 (color online). (a) Magnitude ��14 of AMC between
two uncoupled states, l0 ¼ 1 and l0 ¼ 4 modes, as a function of
�. (b) Decay rates �1 and �4 of l0 ¼ 1, 4 uncoupled states. The
dotted line for �1 is an extrapolation beyond spectral visibility.

FIG. 3 (color). CMF spectra for the case of (a) � ¼ 0:125,
(b) � ¼ 0:102, and (c) � ¼ 0:078. Orange and blue arrows
indicate l0 ¼ 1 and l0 ¼ 4 modes, respectively. The output
coupling efficiency of l0 ¼ 1 modes is too small for these modes
to be observed in (a)–(c). Red arrows indicate where l0 ¼ 1 and
4 modes appear to be overlapped. Deformation � was fine-tuned
within 0.005 to maximize the peak. (d) Pump power is increased
above a lasing threshold for l0 ¼ 1 mode at 661 nm with � ¼
0:120. l0 ¼ 1 modes are clearly seen. (e) Observed output
coupling efficiency (black squares) compared to 2�þ (red
squares). Slight reduction in 2�þ itself is mostly due to the
decrease of decay rates of the involved modes. The black dotted
line is a spline fit for visual guidance.
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then evenly divided into segments with each being as wide
as one free spectral range of the l0 ¼ 3 WGM so that each
segment is indexed as n of that WGM. This n is precisely
the internal parameter used throughout this work. The
relative frequencies of observed quasieigenmodes assigned
with n, with respect to the reference frequency of the same
n, are then plotted as a function of n as shown in Fig. 4(b).
By repeating this procedure for other � and then com-
bining the results as a function of n and �, we finally ob-
tain the eigenfrequency surfaces E�ðn;�Þ as shown in
Fig. 4(c). The resulting surfaces exhibit a complex-
square-root-function-like topology with a branch-point
singularity at the EP located approximately at ðn0; �0Þ ¼
ð175; 0:125Þ, where the transition between MC and AMC
of l0 ¼ 1 and 4 modes takes place.

The singular topology of the eigenenergy surfaces
around the EP result in a fundamental inconsistency in
assigning mode labels to quasieigenmodes. In order to
illustrate this point, let us consider a cyclic variation of
(n, �) as shown in Fig. 4(c): ð170; 0:18Þ ! ð190; 0:18Þ !
ð190; 0:10Þ ! ð170; 0:10Þ ! ð170; 0:18Þ enclosing the EP.
If we choose the l ¼ 2 mode at (170, 0.18) and follow the
mode under this cyclic variation, we end up with a different
l ¼ 4 mode in the end after traversing A ! B ! C !
D ! E on the energy surface. What happens is that the

mode label abruptly changes from l ¼ 2 to l ¼ 4 when we
pass by the EP during the adiabatic process of increasing �
(D ! E); moreover, there is no way to avoid this incon-
sistency however differently we label the modes. We have
to perform the cyclic variation once more, traversing E !
F ! G ! H ! A around the EP, in order to come back to
the same starting mode. This consideration reveals a fun-
damental inconsistency in assigning mode labels to qua-
sieigenmodes in nonintegrable open systems. This
ambiguity is a direct consequence of the singular topology
around the EP.
In conclusion, we have observed an EP or the transition

point between MC and AMC in a COM by utilizing differ-
ent output coupling efficiencies in those two cases. The
observed quasieigenfrequencies exhibit a branch-point to-
pology, the very origin of the impossibility of consistent
mode labeling in these open chaotic systems. Our spectro-
scopic method using output coupling efficiency can be
applied to other optical and optomechanical systems to
resolve MC or AMC static mode envelopes [19].
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[5] H.-J. Stöckmann, Quantum Chaos: An Introduction

(Cambridge University Press, Cambridge, 1999).
[6] J. Wiersig and M. Hentschel, Phys. Rev. A 73, 031802(R)

(2006).
[7] J. Wiersig, Phys. Rev. Lett. 97, 253901 (2006).
[8] W.D. Heiss, Phys. Rev. E 61, 929 (2000).
[9] M.V. Berry and D.H. J. O’Dell, J. Phys. A 31, 2093

(1998).
[10] I. Rotter, J. Phys. A 42, 153001 (2009).
[11] A. L. Shuvalov et al., Acta Mech. 140, 1 (2000).
[12] M.K. Oberthaler et al., Phys. Rev. Lett. 77, 4980 (1996).
[13] O. Latinne et al., Phys. Rev. Lett. 74, 46 (1995).
[14] C. Dembowski et al., Phys. Rev. Lett. 86, 787 (2001).
[15] C. Dembowski et al., Phys. Rev. Lett. 90, 034101 (2003).
[16] H. Cartarius et al., Phys. Rev. Lett. 99, 173003 (2007).
[17] S. Y. Lee et al., Phys. Rev. A 78, 015805 (2008).
[18] S.-B. Lee et al., Phys. Rev. A 80, 011802(R) (2009).
[19] T. Carmon et al., Phys. Rev. Lett. 100, 103905 (2008).
[20] S. Moon et al., Opt. Express 16, 11 007 (2008).
[21] J. Yang et al., Rev. Sci. Instrum. 77, 083103 (2006).
[22] S.-B. Lee et al., Phys. Rev. A 75, 011802(R) (2007).
[23] S.-B. Lee et al., Phys. Rev. Lett. 88, 033903 (2002).
[24] Cavity Quantum Electrodynamics, edited by P. Berman

(Academic Press, New York, 1993).
[25] P. Chylek et al., Opt. Lett. 16, 1723 (1991).

FIG. 4 (color). (a) The observed spectrum for � ¼ 0:187.
(b) The relative frequencies of observed quasieigenmodes with
respect to the reference frequency of the same n as a function of
n. (c) Eigenfrequency surfaces of two coupled states l ¼ 2
(orange dots) and l ¼ 4 modes (blue dots) in n-� parameter
space show a complex-square-root-like topology with a branch-
point singularity at the EP, ðn0; �0Þ ¼ ð175; 0:125Þ.
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