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We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the

diagrams with electron and muon vacuum polarizations. We calculate single-logarithmic and nonloga-

rithmic contributions of order �3ðm=MÞEF generated by gauge invariant sets of diagrams with electron

and muon polarization insertions in the electron and muon factors. Combining these corrections with the

older results, we obtain total contribution to hyperfine splitting generated by all diagrams with electron

and muon polarization loops. The calculation of this contribution completes an important stage in the

implementation of the program of reduction of the theoretical uncertainty of hyperfine splitting below

10 Hz. The new results improve the theory of hyperfine splitting and affect the value of the electron-muon

mass ratio extracted from experimental data on muonium hyperfine splitting.
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Muonium is a purely electrodynamic bound state, and
the existence of highly accurate experimental results [1]
makes it the best system for a comparison of the precise
quantum electrodynamic theory of hyperfine splitting
(HFS) with experiment [2]. The hyperfine splitting interval
is proportional to the electron-muon mass ratio, and the
current theoretical prediction is

�Eth
HFSðMuÞ ¼ 4 463 302 904ð518Þð30Þð70Þ Hz; (1)

where the first error is due to the experimental error of
direct measurement of electron-muon mass ratio m=M, the
second error is due to the experimental uncertainty of the
fine structure constant �, and the third error is an estimate
of yet uncalculated theoretical corrections (for more de-
tails, see [4,5]). The uncertainty of the electron-muon mass
ratio dominates in the balance of errors and therefore in the
measurement of the electron-muon mass ratio. We see
from Eq. (1) that calculation of all theoretical corrections
with a magnitude above 10 Hz would improve accuracy of
the electron-muon mass ratio. There are three series of yet
uncalculated corrections of such magnitude [4]: (a) single-
logarithmic and nonlogarithmic radiative-recoil correc-
tions of order �3ðm=MÞEF, (b) nonlogarithmic contribu-
tions of order ðZ�Þ3ðm=MÞEF, and (c) nonlogarithmic
contributions of order �ðZ�Þ2ðm=MÞEF (Z is the nucleus
charge, Z ¼ 1 for muonium). In this Letter, we complete
the calculation of all single-logarithmic and nonlogarith-
mic radiative-recoil corrections connected with the elec-
tron and muon polarization loops.

The radiative-recoil corrections of order �3ðm=MÞEF

are enhanced by the large logarithm of the muon-electron
mass ratio M=m [6]. The leading logarithm cubed and
logarithm squared contributions are generated by the

graphs with the electron closed loops in Figs. 1–4 (and
by the diagrams with the crossed exchanged photon lines)
and were calculated a long time ago [6,7]. Single-
logarithmic and nonlogarithmic terms of order
�3ðm=MÞEF are generated by all of the diagrams in
Figs. 1–4, by the respective graphs with the muon loops,
by the graphs with polarization and radiative photon in-
sertions in the muon line, and also by the three-loop graphs
with radiative photons in the electron and/or muon lines
but without polarization loops. Below we calculate three-
loop single-logarithmic and nonlogarithmic radiative-
recoil corrections generated by the diagrams in Figs. 5
and 6 with both the electron and muon loops. We combine
these corrections with the earlier results and present com-
plete results for all radiative-recoil corrections generated
by the diagrams with electron and muon polarizations.
There are numerous technical problems connected with

calculation of the diagrams in Figs. 5 and 6. As usual,
individual diagrams are ultraviolet and infrared divergent.
In addition, the integrands in the Feynman parametrization
for the exchanged integrals do not admit expansion in the
small mass ratio before integration generating spurious
divergences. This problem is solved by direct integration
over exchanged momenta in four-dimensional Euclidean
space. After angular integrations, we used the method of
overlapping small and large momentum expansions of the

FIG. 1. Graphs with two one-loop polarization insertions.
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integrand to obtain a systematic series over powers of the
small electron-muon mass ratio and its logarithm [8,9].
Ultraviolet divergences are really not a problem and were
dealt with by usual subtractions.

The largest challenge by far is connected with the spu-
rious infrared divergences. Gauge invariant sets of dia-
grams in Figs. 5 and 6 are infrared finite, but each
individual diagram is infrared divergent even in the infra-
red soft Yennie gauge. In order to obtain accurate results,
we need to separate the would-be infrared divergent terms
in the integrands and explicitly cancel them analytically in
the sum of contributions of different diagrams. In order to
explain how such cancellation is achieved, we start with
the skeleton diagrams with two-photon exchanges in Fig. 7.
All three-loop diagrams in Figs. 5 and 6 may be interpreted
as radiative corrections to the skeleton diagrams. We con-
sider the momentum integrand in the skeleton case as a
product of the skeleton electron (muon) factor L��ðkÞ and
the remaining part of the diagram. The factor L��ðkÞ is the
Compton scattering amplitude for virtual photons.
Contributions to HFS generated by the diagrams in
Figs. 5 and 6 are described by the integrals similar to the
integrals for the diagrams in Fig. 7. The only difference is
that for the diagrams in Figs. 5 and 6, we include in the
integral the radiatively corrected virtual Compton scatter-
ing amplitude instead of the skeleton one. A generalized
low energy theorem holds for the virtual Compton scatter-
ing amplitude with subtracted anomalous magnetic mo-
ment contribution (see more on this subtraction below)
[8,9]. According to this theorem, the electron (muon)
factor L��ðkÞ is suppressed by an additional factor k2=m2

(k2=M2) in comparison with the respective skeleton factor.
Because of this suppression, the integrals corresponding to
the diagrams in Figs. 5 and 6 are infrared finite, and the
integration region with momenta less than the electron
mass are additionally suppressed. As a result, we can
omit the atomic scale external virtualities of order m�
and calculate matrix elements in the scattering regime
between the free electron and muon spinors. We use the
Feynman gauge to obtain matrix elements of the gauge
invariant sets of diagrams in Figs. 5 and 6. We have derived
some useful identities for the integrands that allowed us to

cancel the would-be infrared divergent terms in the inte-
grands before integration. Insertion of polarization opera-
tors in the diagrams in Figs. 5 and 6 is taken care of by
using the massive photon propagator for radiative photons
(but not for exchanged photons) with the photon mass
squared �2 ¼ 4m2=ð1� v2Þ or �2 ¼ 4M2=ð1� v2Þ for
the electron and muon polarization loops, respectively.
These massive propagators require an additional integra-
tion over velocity v with the weight

R
1
0 dvv

2ð1�
v2=3Þ=ð1� v2Þ.
The diagrams in Fig. 5 with the electron polarization

loops generate nonrecoil and logarithm squared, single-
logarithmic, and nonlogarithmic radiative-recoil contribu-
tions to HFS. It turns out that the gauge invariant anoma-
lous magnetic moment in these diagrams does not generate
radiative-recoil corrections (see, e.g., [9,10]). Then the
radiatively corrected electron factor L�� provides an addi-

tional suppression factor k2=m2 in the skeleton integral
over the exchanged momenta. The wide integration region
between the electron and muon masses m � k � M re-
mains logarithmic. We calculated the nonrecoil contribu-
tion numerically, the logarithm squared and single-
logarithmic terms analytically, and the nonlogarithmic
term numerically. The logarithm squared term is already
well known [7], and the single-logarithmic and nonloga-
rithmic contributions are as follows:

�E ¼
��

�2 � 53

6

�
ln
M

m
þ 7:0807

�
�3

�3

m

M
EF: (2)

The electron factor with muon polarization insertions in
the diagrams in Fig. 5 provides an additional suppression
factor k2=M2 and lifts characteristic integration momenta
to the scale of the muon mass. Then these diagrams do not
generate nonrecoil and logarithmic contributions to HFS.
The respective leading recoil correction is a pure number
that we calculated numerically:

�E ¼ �1:3042
�3

�3

m

M
EF: (3)

FIG. 4. Graphs with light-by-light scattering insertions.

FIG. 5. Graphs with polarization insertions in the electron
factor.

FIG. 2. Graphs with two-loop polarization insertions.

FIG. 3. Graphs with radiative photon insertions.
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Consider now the diagrams in Fig. 6 with radiative
corrections in the muon line. The radiatively corrected
muon factor provides an additional suppression factor
k2=M2, and the integral over exchanged momenta is non-
logarithmic. There is, however, another source of large
logarithms in the case of electron polarization insertions
in Fig. 6. The electron polarization insertions in the dia-
grams in Fig. 6 enter in the asymptotic regime, and the
respective leading contribution to HFS is the product of the
leading asymptotic term in the high momentum expansion
of the electron polarization operator and the radiative-
recoil correction to HFS generated by the one-loop muon
factor without polarization insertions. In other words, the
leading logarithmic contribution to HFS generated by the
diagrams in Fig. 6 is obtained from the respective non-
logarithmic contribution of the diagrams without polariza-
tion insertions by substitution of the running coupling
constant �ðMÞ for radiative photons. We also calculated
the nonlogarithmic contribution and obtained

�E¼
��

3�ð3Þ�2�2 ln2þ13

4

�
ln
M

m
þ12:227ð2Þ

�
�3

�3

m

M
EF:

(4)

The muon factor with muon polarization loops in the
diagrams in Fig. 6 again provides the suppression factor
k2=M2 but no enhancements. As a result, these diagrams
generate only nonlogarithmic radiative-recoil corrections.
After numerical calculations, we obtained

�E ¼ �0:931
�3

�3

m

M
EF: (5)

Other single-logarithmic and nonlogarithmic three-loop
radiative-recoil corrections generated by the diagrams with
electron and muon polarization insertions were obtained
earlier, and we collect the respective results below. Single-
logarithmic and nonlogarithmic radiative-recoil correc-
tions generated by the diagrams with two electron or two
muon loops in Fig. 1 are [11]

�E ¼
�
�
�
2�2

3
þ 25

9

�
ln
M

m
� 4�2

9
� 535

108

�
�3

�3

m

M
EF: (6)

The diagrams with one electron and one muon loop in
Fig. 8 produce only single-logarithmic and nonlogarithmic
contributions to HFS [11]

�E ¼
��

2�2

3
� 20

9

�
ln
M

m
þ �2

3
� 53

9

�
�3

�3

m

M
EF: (7)

The single-logarithmic and nonlogarithmic radiative-
recoil contributions to HFS generated by the diagrams in
Fig. 2 with two-loop electron or two-loop muon polariza-
tion insertions were calculated analytically [11]:

�E ¼
�
�
�
6�ð3Þ þ 13

4

�
ln
M

m
� 97

8
�ð3Þ � 16Li4

�
1

2

�

þ 2�2

3
ln22� 2

3
ln42þ 5�4

36
� �2

4
þ 7

16

�
�3

�3

m

M
EF:

(8)

The single-logarithmic and nonlogarithmic radiative-
recoil contributions generated by the diagrams with elec-
tron or muon polarization insertions in the exchanged
photons in Fig. 3 have the form [12]

�E ¼
�
10

3
ln
M

m
þ 8:6945

�
�3

�3

m

M
EF: (9)

The diagrams in Fig. 9 with the electron or muon polar-
ization insertions in the exchanged photons generate only
single-logarithmic and nonlogarithmic radiative-recoil
contributions to HFS [12]:

�E¼
��

6�ð3Þ�4�2 ln2þ5

2

�
ln
M

m
þ23:8527

�
�3

�3

m

M
EF:

(10)

Combining all three-loop single-logarithmic and non-
logarithmic radiative-recoil corrections to hyperfine split-
ting due to electron and muon polarization loops in Eqs. (2)
–(10), we obtain

�Etot ¼
�
½3�ð3Þ � 6�2 ln2þ �2 � 8� lnM

m
þ 27:666ð2Þ

�

� �3

�3

m

M
EF: (11)

FIG. 8. Graphs with both the electron and muon (bold) loops.

FIG. 9. Muon line and electron vacuum polarization.FIG. 7. Diagrams with two-photon exchanges.

FIG. 6. Graphs with polarization insertions in the muon factor.
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For completeness, let us mention that the three-loop
radiative-recoil correction generated by the diagrams
with one-loop fermion factors (and without polarization
loops) in Fig. 10 is also known [13]:

�E ¼
�
� 15

8
�ð3Þ þ 15�2

4
ln2þ 27�2

16
� 147

32

�
�3

�3

m

M
EF:

(12)

The only still unknown single-logarithmic and non-
logarithmic three-loop radiative-recoil corrections are gen-
erated by the gauge invariant sets of diagrams with two-
loop fermion factors without polarization insertions and
the diagrams with light-by-light insertions in the ex-
changed photons. Calculation of these corrections is a
task for the future.

The total result for all known three-loop single-
logarithmic and nonlogarithmic radiative-recoil correc-
tions to hyperfine splitting is given by the sum of the
contributions in Eqs. (11) and (12)

�Etot ¼
�
½3�ð3Þ � 6�2 ln2þ �2 � 8� lnM

m
þ 63:127ð2Þ

�

� �3

�3

m

M
EF: (13)

Numerically this contribution to HFS in muonium is

�Etot ¼ �34:7 Hz: (14)

As was explained above, the current goal in the theory of
hyperfine splitting is to reduce the theoretical uncertainty
below 10 Hz (see a more detailed discussion in [4,12,14]).
The muon and electron polarization operator contributions
and other corrections collected in Eq. (13), together with
the results of comparable magnitude in [15–20], constitute
a next step toward achievement of this goal. Pheno-
menologically, the improved accuracy of the theory of
hyperfine splitting would lead to a reduction of the uncer-
tainty of the value of the electron-muon mass ratio derived
from the experimental data [1] on hyperfine splitting (see,
e.g., reviews in [4,5,14]).
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FIG. 10. Diagrams with two fermion factors.
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