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A method is presented by which the lattice thermal conductivity can be computed from first principles

using relatively small system sizes and simulation times. The method uses the relation for thermal

conductivity of a kinetic gas, with phonon lifetimes and frequencies determined by combining equilibrium

first principles molecular dynamics and first principles lattice dynamics. To illustrate the method, the

lattice conductivity is computed for MgO periclase. For individual wave vectors and vibrational modes,

phonon lifetimes in periclase are found to be inversely proportional to temperature, with optic modes

shorter lived than acoustic modes, contributing only �5% to the lattice conductivity. Computed thermal

conductivity values show excellent agreement with experimental measurements, and suggest that the

radiative contribution to thermal transport in periclase starts playing a role above �1500 K.
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Conductive transport of heat in an anisotropic material
in response to a thermal gradient rT is described by
Fourier’s equation

Q ¼ �KijrT; (1)

where Q is the heat flux vector and Kij is the thermal

conductivity tensor [1], which reduces to a scalar in mate-
rials where anisotropy is weak or absent. Kij represents

the combined effect of heat transport via electrons, pho-
tons, and phonons. In dielectric materials, the electronic
contribution is negligible, and the radiative contribution
only important at high temperatures [2], so that heat is
transported primarily through lattice vibrations.

Given the technical challenges associated with the mea-
surement of K at pressures in excess of 10 GPa [3–6], its
theoretical computation can be of significant utility to high
pressure and planetary sciences, further allowing the lattice
contribution to be studied separately, directly testing the
theoretical description of lattice conductivity. This may
either be done though anharmonic lattice dynamics [7],
or via molecular dynamics simulations. In the nonequilib-
rium molecular dynamics approach, conductivity is ob-
tained through the application and maintenance of
periodic thermal gradients [8–11], while in the equilibrium
molecular dynamics approach conductivity is computed
from either the heat flux autocorrelation [12–14], or the
mean phonon lifetime [13–15]. It is this latter approach
which we will pursue here.

Because finite conductivity is the result of anharmonic
lattice vibrations, theoretically computed values are very
sensitive to the form of the potential applied in the simu-
lation. Empirical potentials are not sufficiently accurate,
and cannot be used at high pressures where the experimen-
tal data required for their constraint is insufficient. These
concerns fall away when using first principles methods,
where the potential is obtained in situ from the relaxed
charge density via density functional theory [16–18].

Unfortunately, these methods are very computationally
intensive, limiting system sizes to at most a few hundred
atoms.
In this study we present a method by which the effective

lattice conductivity K can be computed using first prin-
ciples molecular dynamics (FPMD). We illustrate the
method with MgO periclase, a face-centered cubic oxide
that has been previously investigated both experimentally
and computationally. The large electronic band gap (6.5 eV
[19]) assures negligible radiative and electronic contribu-
tions, and facilitates direct comparison of computed lattice
conductivities to experimental measurements. The pres-
ence of optic modes further allows us to test their conduc-
tive contribution, and thus assess their importance for
conduction in more complex minerals.
To the extent that anharmonicity may be viewed as a

perturbation of the harmonic description, lattice conduc-
tivity occurs as heat transport by phonons. By describing
the steady state spatial redistribution of the phonon popu-
lationN under the influence of a thermal gradientrT, the
thermal transport properties of the lattice can be derived.
The Boltzmann equation describes the steady state resis-
tance to phonon diffusion arising from scattering off grain
boundaries, lattice defects, and other phonons [2,20,21],

@N
@t

��������diff
þ@N

@t

��������scatt
¼ 0: (2)

If the variation of the phonon distribution from the mean
�N is small, (2) can be solved by linearizing the scattering
term, introducing a mean phonon lifetime �,

@N
@t

��������scatt
¼ N � �N

�
: (3)

In essence this approximation views phonons as harmonic
but of finite lifetime, i.e., as a kinetic gas of phonons
interacting only by instantaneous collisions. The solution
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to the Boltzmann equation for K in an isotropic periodic
solid with n atoms per unit cell is then equivalent to that
which describes the conductivity of a kinetic gas of elastic
particles [2,20,21],

K ¼ X3n
s

Z
q
v2
q;scq;s�q;sdq; (4)

where vq;s ¼ jvq;sj is the phonon group velocity,

v q;s ¼
@�q;s

@q
; (5)

and cq;s is the mode heat capacity,

cq;s ¼ kB
V

x2ex

ðex � 1Þ2 ; x ¼ h�q;s

kBT
: (6)

To compute K via (4), relaxation times and vibrational
frequencies are needed as a function of wave vector.

Consider an infinite lattice with n atoms per unit cell, not
necessarily of the same chemical species. With the posi-
tion, velocity, and mass of particle a of primitive cell A at
time t > 0, respectively, denoted as rAa ðtÞ, uA

a ðtÞ, and ma,
the weighted velocity field

u ðr; tÞ ¼ X1
A

Xn
a

ffiffiffiffiffiffiffi
ma

p
uA
a ðtÞ�½r� rAa ðtÞ� (7)

has reciprocal space representation

u ðq; tÞ ¼
Z 1

�1
uðr; tÞ expðiq � rðtÞÞdr: (8)

From the velocity autocorrelation function of the lth ve-
locity component [22],

Jlðq; tÞ ¼ lim
t0!1

1

t0

Z t0

0
ulðq; tÞulðq; tþ t0Þdt0; (9)

follows the spectral density by Fourier transformation,

glðq; �Þ ¼ 4

kBT

Z 1

0
Jlðq; tÞ expð2�i�tÞdt: (10)

In the phonon lifetime approximation, the velocity auto-
correlation function at a specific wave vector will be a
Fourier sum of 3n damped harmonic oscillators,

J0lðq; tÞ ¼ J0l
X3n
s

cosð2��q;stÞ expð�t=�q;sÞ; (11)

where J0l ¼ Jlðq; 0Þ. The spectral density of J0lðq; tÞ con-
sists of 3n delta functions, each convolved with the Fourier
transform of the associated exponential function describ-
ing the mode lifetime,

g0lðq; �Þ ¼
X3n
s

2J0l �q;s

1þ ð2��q;sð�� �q;sÞÞ2
: (12)

To the extent that the phonon lifetime approximation is

accurate, glðq; �Þ ¼ g0lðq; �Þ is valid and the lifetime can

be obtained from the atomic phase trajectories.
In practice we have access only to systems of finite

duration and size, and Jlðq; tÞ has to be damped to zero
for Fourier transformation to be performed. The damping
function is chosen such that its convolution with the spec-
tral peaks can be analytically accounted for in the width of
the spectral peak. An exponential function (decay time
�damp) is ideal for this, so that � follows from the width

of the spectral peak �peak as

1=� ¼ 1=�peak � 1=�damp: (13)

We compute Jlðq; tÞ using FPMD at the accessible exact
wave vectors (a consequence of the finite system size), and
obtain vibrational frequencies over the entire Brillouin
zone using first principles lattice dynamics (FPLD). To
the extent that they agree with frequencies obtained from
glðq; �Þ, these harmonic frequencies give accurate values
for vq;s and cq;s.

Thermodynamic properties of MgO periclase were pre-
viously computed using FPMD in the NVT ensemble, in
excellent agreement with the available thermodynamic and
shock compression data to very high pressures (260 GPa)
[23]. Details of the FPMD method are discussed in pre-
vious studies [23,24]. First principles calculations are per-
formed using VASP [25], combined with PHONON [26] to
compute phonon spectra. Exchange and correlation effects
are evaluated via the local density approximation (LDA),
with electronic wave functions represented with ultrasoft
pseudopotentials [27].
Five FPMD simulations were performed using a 2�

2� 2 supercell of eight fcc unit cells (64 atoms) [28] in
the NVE ensemble [29] at the LDA relaxed volume,
with resulting mean pressures and temperatures of
½PðGPaÞ; TðKÞ� ¼ ½6:56; 680� [9.78, 1180], [11.99, 1530],
[14.04, 1860], and [17.16, 2350]. The increase in pressure
with temperature arises due to thermal expansivity, another
expression of anharmonicity. To evaluate finite size effects,
a 3� 3� 3 supercell simulation was also performed (216
atoms; ½P; T� ¼ ½8:18; 957�). NVE simulations are initi-
ated using the electronic charge density, atomic positions
and velocities from NVT simulations equilibrated at the
desired temperature over at least 4000 time steps (femto-
seconds). Each NVE simulation is run for a total of 40 000
time steps, with the first 10 000 steps allowing for equili-
bration of vibrational modes. The force constant matrix
was computed using a 4� 2� 2 supercell [30], with the
dielectric constant and effective charges obtained from the
literature (3.10 and �1:93 [31]).
Phonon spectra determined from the force constant ma-

trix are in excellent agreement with experimental data [32]
as well as with a previous FPLD study [31]. Vibrational
frequencies obtained from the phase trajectories are very
similar to the harmonic values (Fig. 1), so that group
velocities determined from harmonic frequencies are suf-
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ficiently accurate to compute the group velocities and
modal heat capacities.

Phonon lifetimes at individual wave vectors and vibra-
tional modes are found to decrease with temperature, con-
sistent with proportionality 1=�q;s / T (Fig. S1 of [33]).

Indeed, for simple compounds the phonon lifetime is theo-
retically expected to vary as [21]

1=�q;s ¼ Aq;sT�
2; (14)

where Aq;s are proportionality constants. For MgO we

findAq;s to show notable anisotropy in MgO, but because

K is an integration of �q;s values over the Brillouin zone

(4), mean values ( �As) for each mode may be used to
evaluate K.

The lattice conductivity for periclase computed using (4)
is shown in Fig. 2, together with the value computed using
the larger supercell, and previous experimental and theo-
retical determinations. Agreement between the computa-
tion and experimental values is excellent, although direct
comparison is possible only between 500–1200 K, where
theoretical pressures are comparable to those at which ex-
perimental measurements are available [3]. Comparison to
higher temperature experimental values suggests that the
radiative conductivity is significant above �1500 K.

Group velocity values for optic modes are notably
smaller than for acoustic modes (Fig. 1). For a homoge-
neous phonon lifetime, optic modes contribute 6.7% to the
total lattice conductivity. However, because computed op-
tic phonon lifetimes are somewhat smaller than for acous-
tic modes, this contribution reduces to 4.9% in periclase.
Indeed, studies employing the kinetic conductivity equa-

tion often assume contributions from optic modes to be
negligible [34,35], although the extent to which this ap-
proximation holds for more complex structured minerals
remains to be tested.
One possible concern for computational accuracy is the

effect of the relatively small simulation cell on �As and �q;s
itself. Although a larger sampling of the Brillouin zone will

yield a more representative averaging for �As, comparison
of Aq;s values at [100] to ½12 00�, and at ½12 1

2 0� to ½1 1
2 0�

indicates that � varies primarily as a function of azimuth,
and less so radially (Fig. S1 of [33]). It is therefore unlikely

that �As determined from a larger set of q points would

vary by more than �1� from the mean �As values.

Comparison of �As for the 64 and 216 atom systems shows
this indeed to be the case, while the �q;s values for the

shared wave vectors (� and X) are robust to within the
uncertainty of individual Aq;s fits (Fig. S1 of [33]). This

suggests that �q;s is not very sensitive to system size, so

that the method presented can yield accurate effective K
values, from first principles, using relatively few atoms.
To summarize, an new method to compute lattice ther-

mal conductivity in crystalline solids has been introduced
which is accurate as well as computationally efficient. The
method is based on the kinetic conductivity relation, with
phonon lifetimes, group velocities, and heat capacities
obtained by combining first principles molecular dynamics
and lattice dynamics. Lattice conductivity for MgO peri-
clase has been computed, and is in excellent agreement
with the available experimental data, also resolving the
relative conductive contributions from individual modes.
The use of first principles calculations renders the method
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FIG. 1 (color online). (middle) Anharmonic phonon frequencies from FPMD at exact wave vectors (circles—64 atom cell, squares—
216 atom cell; T values in K) compared with harmonic frequencies calculated from the force constant matrix (solid lines). Temperature
dependence of anharmonic frequencies is in general small enough that vq;s and cq;s can be accurately computed from harmonic

frequencies. Crosses are inelastic neutron scattering data of Sangster et al. [32]. (left and right panels) Examples of FPMD spectral
peaks, at [100] and ½12 1

2
1
2�, from which phonon lifetimes are determined.
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predictive, and thus ideal for constraining lattice conduc-
tivity at extreme physical conditions.
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FIG. 2 (color online). Thermal conductivity of MgO at the
LDA relaxed volume (V ¼ 10:998 cm3 mol�1). Thick line
with uncertainty envelope—64 atom cell; diamond—216 atom
cell. Pressures to which various temperatures correspond are
indicated on the top axis, and include a correction for LDA
overbinding [23,24]. Previous work: Katsura [3], Kanamori et al.
[36], Cohen [12].
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