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The drying kinetics of a porous medium is classically described in three main periods, which depend on

the interplay between the external and internal mass transfers during evaporation. The first period is

described as essentially depending on the external mass transfer, whereas the third period is dominated by

the internal mass transfer. The second period is a crossover period. We show experimentally that a similar

drying kinetics can be obtained from a much simpler system owing to the effect of corner liquid films: a

capillary tube of square cross section.
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Drying of porous media is a process of particular im-
portance in relation with many applications, including soil
drying, recovery of volatile hydrocarbons from under-
ground oil reservoirs, and drying in food, textile, and
pharmaceutical industries. Although much progress has
been made on drying thanks to invasion percolation con-
cepts and pore network simulations, e.g., [1], the prediction
of drying rate, and therefore of drying time, is still a
challenge. It is now widely admitted that this difficulty
stems largely from the effect of liquid films in grooves,
crevices of roughness in the pore space [2,3]. The accurate
description of drying in a system where these films have a
major effect is therefore of great interest. Although a
porous medium with its hierarchy of pore diameters and
junction structures is clearly much more complex, the
consideration of an individual channel has often proven
to be a useful step in the understanding of transport phe-
nomena in porous media. Our study is also of direct interest
for microfluidic systems, e.g., [4], where square and rect-
angular channels are common. Also, we note that little has
been done on the evaporation from a single capillary tube
since the pioneering experiments of Stefan [5] for circular
tubes. Here we show that evaporation in a square tube is
much faster and dramatically different owing to the effect
of corner films. The square tube drying kinetics is shown to
resemble the drying curve of a porous medium, which is
classically described in three main periods as follows [6].
During the first period, referred to as the constant rate
period (CRP), the evaporation rate is essentially constant
and controlled by the external demand (velocity and rela-
tive humidity in surrounding air). The last period, the
receding front period (RFP), is characterized by an internal
evaporation front receding into the porous medium
whereas the intermediate period, the falling rate period
(FRP), is a crossover period characterized by a significant
drop in the drying rate. The aim of this work is to present a
detailed description of the drying kinetics for our simple
system. Interestingly, this description is consistent with the
analysis presented in [7], where it was argued that the CRP

for a usual porous medium could exist even in the absence
of bulk liquid-gas interface at the surface pores provided
that liquid films reach the porous medium surface.
The 10 cm long square capillary tube is made of boro-

silicate glass. The tube internal side length d and wall
thickness are 1 and 0.2 mm, respectively. The tube internal
corners are not sharp but rounded (Fig. 1). Measurements
of the tube internal curvature radius r0 from high magnified
images of tube cross sections give r0 � 100 �m. The
capillary tube is held vertically and glued directly to a
syringe placed on a precision pump, allowing accurate
filling of the tube by the liquid (here n-heptane or
2-propanol, two perfectly wetting liquids). This setup is

(a)

(b) (c)

FIG. 1. (a) Visualization of corner liquid films in tube entrance
[the camera is aligned on the tube diagonal axis (shown as a
dashed line in (b)]. (b) Sketch of tube cross section in corner film
region, where r0 is the curvature radius of rounded corner, R is
the in-plane curvature radius of corner menisci, and w is the
corner film thickness. (c) Computed shape of gas-liquid interface
in the tube.
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placed inside a plexiglass enclosure which helps to main-
tain a constant temperature (�0:5 �C) in the tube environ-
ment during the experiment. At t ¼ 0, the top tube end is
exposed to a stagnant air atmosphere at ambient tempera-
ture and evaporation starts. As shown in Fig. 1, thick liquid
films remain trapped along the four internal corners when
the bulk meniscus recedes into the tube as a result of
evaporation. Using an ombroscopy visualization tech-
nique, images are acquired with two CCD cameras to
follow both the bulk meniscus position z0 and the evolution
of corner films at the tube entrance.

The evolution of z0 is shown in Fig. 2 together with its
theoretical evolution for a circular tube for both liquids [5].
Evaporation is much faster with the square tube, for the
corner films provide a pathway for transporting the liquid
from the receding bulk meniscus up to the film tips. One
can distinguish three main phases for the square tube: a
first phase where z0 seems to vary linearly with time, then a
crossover period where the bulk meniscus significantly
slows down, and eventually a third phase where z0 /

ffiffi
t

p
as shown in the inset of Fig. 2. These three periods are best
seen in Fig. 3, which shows the drying curve for the
heptane experiment (a similar curve is obtained with the
2-propanol data). So as to use the same convention as for
the drying curve of a porous medium [6], we define the
liquid saturation as S ¼ ðz0max � z0Þ=z0max, where z0max is
the farthest position reached by the bulk meniscus in the
experiment. Hence S is the liquid volume fraction in the

tube region z � z0max, neglecting, however, the small
amount of liquid trapped along the corners. The evapora-
tion flux E shown in Fig. 3 is estimated from the mass

balance E ¼ �‘d
2ð1� A�

cÞ dz0dt , where �‘ is the liquid den-

sity and A�
c ¼ 4�

3:772
with � ¼ 1� �=4. The area d2ð1� A�

cÞ
is the area left free of liquid within the tube as the junction
between the bulk meniscus and the corner menisci for a

perfectly wetting liquid [8]. Computing dz0
dt from our dis-

crete series of data (t; z0) is not straightforward because of
the higher frequencies fluctuations of z0 with time that are
barely discernible in Fig. 2 but significantly affect the
direct computation of derivatives from a simple finite
difference scheme (these fluctuations are notably due to
small temperature fluctuations and air motion variations
induced by the room air conditioning system). One first
option is to use a polynomial curve fitting procedure and

compute dz0
dt from deriving the polynomial expression. This

can be done splitting the data in several subsets and gives
the solid line shown in Fig. 3, where Emax is the maximum
evaporation flux computed using this procedure. An alter-
native consists in first applying a smoothing procedure to

the raw data (t; z0) and then computing dz0
dt using a simple

finite difference scheme. We have tested several smoothing
procedures (moving averages, Savitzky-Golay filters) and
all give results consistent with the evolution deduced from
the curve fitting procedure. An example of such results is
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FIG. 2. Evolution of bulk meniscus position z0 as a function of
time. The thick solid line and the dashed line are for the square
tube. The thin solid line and dashed line on the bottom are for a
circular tube. The inset shows the evolution of z0 as a function offfiffi
t

p
in the square tube with heptane. The position when the corner

liquid films cease to be attached to the tube entrance (depinning)
is indicated. The depinning does not occur at the same time in
the four corners in the 2-propanol experiment. The two dashed
lines indicate the first depinning and when depinning has oc-
curred in the four corners, respectively.
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FIG. 3 (color online). Square tube drying kinetics with heptane
[solid line from fits of z0ðtÞ, red circles from discrete derivatives,
see text] and evolution of the corner film thickness w measured
at a distance of one tube internal width d from tube entrance
[solid line, the dotted line corresponds to the purely hydrostatic
evolution, whereas the dashed line is deduced from a model of
viscous flow in the film, see text, wmax ¼ ð ffiffiffi

2
p � 1Þð d

3:77 � r0Þ].
The vertical dashed line marks the film tip depinning. The right-
hand inset shows the drying kinetics as a function of z0 com-
puted numerically when the film thinning and depinning are due
to gravity forces only. The left-hand inset shows the evolution of
dimensionless evaporation flux as a function of w.
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shown in Fig. 3 (circles). The remarkable result is that the
drying curve in Fig. 3 is similar to the drying curve of
porous media [6]. An accurate description of this curve is
possible in relation with the evolution of film thickness w,
measured inside the tube at a distance d from tube entrance
from local visualization by ombroscopy, and also shown in
Fig. 3 [w is the film thickness in the intersection between
the corner angle bisector plane and the tube cross section
plane; see Fig. 1(b)]. We now describe the three periods
and how they are related to the external and internal mass
transfers.

Figure 3 shows that the evaporation rate is not exactly
constant but slowly decreases (almost linearly) during the
CRP. Interestingly, this is also observed, but not explained,
with porous media [6]. The observations indicate that the
corner films are attached to the tube entrance and that the
film thickness w decreases in the tube entrance region all
along the CRP (Fig. 3). Hence the liquid is transported
within the liquid films up to the tube entrance thanks to the
effect of capillary forces during this period. The films’
thinning induce, in turn, the slow decrease in the evapora-
tion flux. The mechanisms responsible for the films’ thin-
ning can be understood from a simple model. Following
[9], we express the liquid flow rate qwithin each of the four
corner films as

qðzÞ ¼ �l

�R4

��

�
dpl

dz
� �lg

�
; zf < z < z0; (1)

where R is the corner film menisci in-plane curvature
radius [Fig. 1(b)], � the liquid viscosity, and � a dimen-
sionless resistance [9]; zf is the film tip position (zf ¼ 0

during the CRP). Note that the curvature in the z direction,
i.e., along the tube, is neglected. This, however, does not
affect significantly our results because the film tip region
where the axial curvature is non-negligible is in fact OðwÞ,
that is quite small. The vapor transport by diffusion in the
gas phase is only significant in the film tip region and can
be neglected further below in the tube. We therefore as-
sume that the phase change takes place only at the film tip.
Combining Eq. (1) with Laplace’s law, pl ¼ pg � �

R where

� is the surface tension, leads to

q ¼ �l

�

��

�
�R2 dR

dz
� R4�lg

�
; zf < z < z0; (2)

which, combined with the mass balance equation 4q ¼
�ld

2ð1� A�
cÞ dz0dt , leads to

ð1�A�
cÞdz0dt

¼ 4�

d2��

�
�R2dR

dz
�R4�lg

�
; zf < z<z0:

(3)

Assuming that the bulk meniscus shape is essentially iden-

tical to the quasistatic shape yields pg � plðz0Þ ¼ 3:77�
d [8],

and therefore R ¼ d=3:77 as boundary condition at z ¼ z0.

For given values of z0 and dz0
dt deduced from the experi-

mental data, Eq. (3) is solved for determining the evolution

of R along the film, and then the film thicknessw ¼ ð ffiffiffi
2

p �
1ÞðR� r0Þ. Contrary to a perfectly sharp corner, Eq. (3)
cannot be solved analytically because the dimensionless
flow resistance � depends on R for a rounded corner [9].
The degree of roundedness is an important parameter. A
perfectly sharp corner would lead to a much longer CRP. A
finite difference numerical solution gives the results dis-
played in Fig. 3, in a fairly good agreement with the
experimental data. We have also plotted the thinning due
to the effect of gravity forces only, a solution referred to as
the purely hydrostatic one in the caption of Fig. 3 and given
by Boðz�0 � z�fÞ ¼ 1

R�ðz�
f
Þ � 1

Rðz�
0
Þ , where the * indicates a

variable made dimensionless using d as characteristic

length. Bo is the Bond number, Bo ¼ �lgd
2

� . As seen in

Fig. 3, gravity effects are responsible for the film thinning
over most of the CRP. However, viscous effects become
very significant toward the CRP end (the film thickness
ceases to follow the purely hydrostatic evolution and de-
creases much more abruptly). When R is about to be equal
to r0 at the tube top, we expect that the films cease to be
attached to the tube top and begin to recede into the tube.
This event can indeed be seen on the movie obtained from
the high magnification images of tube entrance and is
indicated in Figs. 2 and 3. An interesting question is
whether the film depinning occurs exactly at the end of
the CRP (Fig. 2) or slightly later in the FRP (Fig. 3). A
related question is the nature of the CRP-FRP transition: a
‘‘cusp’’ or a softer transition. The exact shape of the curve
E versus S when the evaporation rate begins to drop
abruptly is, however, difficult to determine with a great
accuracy from our data. To gain further insight into the
CRP-FRP transition, the Laplacian problem governing the
vapor transport by diffusion in the gas phase is solved
numerically when the shape of the corner menisci is gov-
erned by the competition between gravity and capillary
forces. The three-dimensional computational domain
includes the gas phase within the tube [as illustrated in
Fig. 1(c)] as well as a spherical outer domain around the
tube. Numerical tests have shown that a sphere with a
radius equal to 5d was sufficient to obtain a solution
independent of the sphere radius. The FLUENT

TM fluid
dynamics analysis package is used to generate the compu-
tational mesh and to solve the diffusion equation. The
three-dimensional shape of the corner film [as illustrated
in Fig. 1(c)] is deduced from a simplified analysis of the
quasistatic shape of liquid-gas interface in the tube that
will be detailed elsewhere. The results, presented in the
right-hand inset of Fig. 3, indicate (i) that the CRP-FRP
transition coincides with the film depinning and (ii) that
this transition is quite similar to the cusp transition ob-
tained from the experimental results. The depinning is not
exactly at the CRP-FRP transition in the experiments
because the film depinning does not occur exactly simul-
taneously in the four corners. From both the simulation
and the experiment it can be concluded, however, that the
CRP-FRP transition essentially coincides with the film
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depinning. Hence the liquid no longer reaches the entrance
of the system during the FRP. The numerical results also
indicate the existence of an additional very short drying
period at the very beginning of the evaporation process
corresponding to the transition from a flat meniscus all
over the tube entrance to a curved meniscus with a depth of
about one internal tube width d. This period cannot be seen
experimentally because the bulk meniscus is typically
located 1 or 2 mm within the tube when the experiment
starts.

The simulations show that the vapor concentration gra-
dients are only significant in the film tip region and are
negligible further away within the tube, a phenomenon
referred to as the diffusional screening phenomenon.
Hence, the dimensionless evaporation flux E� ¼ E

Dced

(where ce is the equilibrium water vapor mass concentra-
tion at the liquid-gas interface andD is the vapor molecular
diffusion coefficient, noting that the vapor concentration in
the far field is nil here) is expected to vary essentially with
the film thickness w. This is illustrated in the left-hand
inset in Fig. 3. Note that the computations have been
performed in the dilute limit, i.e., ce � 1, whereas this
constraint is not satisfied in the experiments with heptane
(ce � 0:245 kg=m3) or 2-propanol (ce � 0:117 kg=m3).
This should explain the difference between the numerical
and experimental results in Fig. 3.

As seen from Fig. 3, E� � 1:3 at depinning, which
allows us to introduce the length � � 0:77d for character-
izing the external mass transfer resistance. Hence the
external mass transfer is equivalent to the diffusive mass
transfer over a tube dry section of length � , that is quite
short compared to tube length. This allows us to finish the
description of the three main drying periods. The large
(more than a 50% reduction in the flux observed at the end
of CRP) and abrupt decrease in the evaporation flux ob-
served for a variation in the main meniscus displacement of
order d (this corresponds to a variation of 0.04 in saturation
in Fig. 3) during the FRP is fully consistent with the fact
that � � OðdÞ. The evolution of the film tip position zf
during the FRP and the RFP can therefore be deduced from

the equation �‘ð1� A�
cÞ dz0dt � Dce

�þzf
and is shown in Fig. 4.

The results shown in Fig. 4 were obtained from the discrete
data shown in Fig. 3 (circles) after some additional data
filtering. As can be seen, zf / z0 when the variation of the

evaporation flux becomes sufficiently small. As a result,
dz0
dt / z�1

0 when zf � � , which consistently leads to the

behavior z0 /
ffiffi
t

p
shown in Fig. 2 when z0=d > 15. This

suggests that the RFP can be defined as the period where zf
varies linearly with z0, that is the period characterized by
the behavior z0 /

ffiffi
t

p
. The FRP-RFP transition corresponds

to the intersection of the straight line with the data curve in
the inset of Fig. 2 and in Fig. 4, i.e., the moment where zf
begins to vary linearly with z0. It could be argued that zf
varies linearly with z0 in the RFPmainly because of gravity
effects since the film’s extension cannot be greater than

ðz�0 � z�fÞmax � Bo�1ð 1r�
0
� 3:77Þ. It can be shown, however,

that the regime zf / z0 should also be observed in the

absence of gravity effects owing to viscous effects. This
will be detailed in a longer paper.
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FIG. 4. Evolution of film tip position zf in the tube as a
function of z0 for the heptane experiment. The inset shows the
evolution of dimensionless evaporation flux as a function of zf.
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