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Recently there has been considerable activity on the subject of the additivity of various quantum

channel capacities. Here, we construct a family of channels with a sharply bounded classical and, hence,

private capacity. On the other hand, their quantum capacity when combined with a zero private (and zero

quantum) capacity erasure channel becomes larger than the previous classical capacity. As a consequence,

we can conclude for the first time that the classical private capacity is nonadditive. In fact, in our

construction even the quantum capacity of the tensor product of two channels can be greater than the sum

of their individual classical private capacities. We show that this violation occurs quite generically: every

channel can be embedded into our construction, and a violation occurs whenever the given channel has a

larger entanglement-assisted quantum capacity than (unassisted) classical capacity.
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Information theory, established by Claude Shannon in
the 1940s as a ‘‘Mathematical Theory of Communication’’
[1], is the theoretical foundation of today’s communication
technologies. The main problem it is concerned with is
how much information can be transmitted down a noisy
channel asymptotically, i.e., the capacity of the channel.
Shannon provided a beautifully simple formula for the
capacity of a discrete memoryless channel, which only
involves an entropic expression of a single channel use.
Subsequent research revealed that this simple capacity
formula fully characterizes the information-carrying capa-
bility of a channel under a large range of circumstances [2],
serving as a very robust measure. E.g., the ability of two
channels together to transmit information is quantified by
the sum of their individual capacities.

Our world however is not the classical one of Shannon’s
noisy channels, but is at a basic level described by quantum
theory. To understand the ultimate limit the laws of physics
impose on our ability to communicate, the underlying
quantum behavior of the channels should be considered.
A quantum channel N is mathematically described by an
isometric map V from the input Hilbert space A to the
combined Hilbert space of the output B and the so-called
environment system E. Then the channel and its natural

complement ~N act as N ð�Þ ¼ TrEV�V
y and ~N ð�Þ ¼

TrBV�V
y. It can in general not only convey classical

messages, but also quantum data, i.e., a Hilbert space of
quantum states. It can also carry classical private informa-
tion, inaccessible to the environment, enabling the classi-
cally impossible, provably unconditionally secure key
distribution [3]. Naturally, deriving capacity formulas of
a quantum channel for transmitting various kinds of infor-
mation is a central task of quantum information theory.

The classical capacity, CðN Þ, is the maximal rate of
classical information that the quantum channel N can
asymptotically transmit with vanishing errors. In contrast
to the classical capacity, the definition of classical private
capacity PðN Þ further requires that the classical informa-
tion conveyed is secret from the environment. Finally, the
quantum capacity QðN Þ quantifies how large a Hilbert
space of states the channelN can transmit asymptotically
and with the error approaching zero. Operationally, quan-
tum information transmission implies classical transmis-
sion, which in turn implies classical communication. I.e.,

CðN Þ � PðN Þ � QðN Þ: (1)

Despite considerable progress, tractable formulae for the
quantum, private, and unrestricted classical capacities are
still out of reach. The HSW theorem [4], Devetak [5], and
the LSD theorem [5–7] give the classical, private, and
quantum capacities, respectively, as the regularization of
single-letter quantities:

�ðN Þ � CðN Þ ¼ lim
n!1

1

n
�ðN �nÞ; (2)

Pð1ÞðN Þ � PðN Þ ¼ lim
n!1

1

n
Pð1ÞðN �nÞ; (3)

Qð1ÞðN Þ � QðN Þ ¼ lim
n!1

1

n
Qð1ÞðN �nÞ: (4)

All three single-letter quantities are obtained via finite
optimizations of entropic expressions: the Holevo capacity
�ðN Þ is the maximum over all ensembles fpi; �ig of states
on A of the Holevo information
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�fpi;�igðN Þ ¼H

��
N

�X
i

pi�i

��
�X

i

piHðN ð�iÞÞ; (5)

where Hð�Þ ¼ �Tr� log� is the von Neumann entropy

(log is always the binary logarithm). Similarly, Pð1ÞðN Þ ¼
maxfpi;�igð�fpi;�igðN Þ � �fpi;�igð ~N ÞÞ, and Qð1ÞðN Þ ¼
max�Icð�;N Þ, with the coherent information [8]

Icð�;N Þ ¼ HðN ð�ÞÞ�Hð ~N ð�ÞÞ: (6)

Neither �ðN Þ, nor Qð1ÞðN Þ, nor Pð1ÞðN Þ are additive;
in fact, � � C [9], Pð1Þ � P [10],Qð1Þ � Q [11]. However,
for certain classes of channels it is known that CðN Þ ¼
�ðN Þ [12–14], and for other classes PðN Þ ¼ Pð1ÞðN Þ,
QðN Þ ¼ Qð1ÞðN Þ [15].

As measures of a channel’s information transmitting
capability, the above three capacity quantities might be
expected to be robust, i.e., just like Shannon’s capacity
for classical channels, to be applicable under a large range
of settings. While this is no longer true when various
auxiliary resources (e.g. free entanglement or classical
communications) are available [16], another weird feature
of the quantum capacity was discovered recently. Smith
and Yard [17] show that, as a function of channels, QðN Þ
is not additive. Specifically, for the two channels N 1 and
N 2 withN 1 satisfyingQðN 1Þ ¼ 0 and PðN 1Þ> 0, and
N 2 the (zero quantum and zero private capacity) 50%
erasure channel, QðN 1 �N 2Þ � 1

2PðN 1Þ> 0. One

might attribute this superactivation of quantum capacity
to the ability to transmit privacy [18], recalling the close
relationship between QðN Þ and PðN Þ [19]. But surpris-
ingly again, Smith and Smolin [20] have found two chan-
nels such that either they have large joint quantum capacity
but negligible individual private classical capacities, or one
of them exhibits a large nonadditivity of �.

In this Letter, we present quantum channels T k
N for

given channel N with finite environment dimension (this
includes all channels with finite dimensional input and
output), and integer k; it inherits input and output from
N , but has also auxiliary registers. We can show that
CðN Þ � CðT k

N Þ � CðN Þ þ �ðkÞ, where �ðkÞ goes to

zero as k ! 1. Regarding the capability of the channel
T k

N , together with a 50% erasure channelA, for quantum

communication, we find that the quantum capacity of the
combined channel T k

N �A is lower bounded by

QEðN Þ, the entanglement-assisted quantum capacity of
N [21]. So, for channels N such that QEðN Þ>CðN Þ,
T k

N—when combined with the above erasure channel—

can transmit more quantum information than its classical
capacity CðT k

N Þ. Referring to Eq. (1), we conclusively

prove that the classical private capacity, in fact even the
quantum capacity, of two channels can be greater than the
sum of their individual classical private capacities. Our
findings not only demonstrate that the classical private
capacity of a quantum channel is generally not additive,
but also yield another counterexample to the additivity of

quantum capacity, of which the underlying reasoning is
different from that of Smith and Yard’s [17].
The channel construction.—In the Stinespring represen-

tation N ð�Þ ¼ TrEV�V
y, the partial trace embodies all

the noise of the channel as loss of information; if Bob got E
as well, there would be no noise at all as he can undo the
isometry. However, a well-known way of giving him E
anyway, is to completely randomize it: denoting the dis-
crete Weyl operators on E by Wj (j ¼ 1; . . . ; jEj2), if the
channel internally picks j uniformly at random and applies
Wj to E, it creates a new channel with output N ð�ÞB �
1
jEj1

E. The extra register is always constant, so the new

channel has the same information properties as N . The
idea of the following channel construction is to add another
‘‘gadget’’ on top of this, which outputs some randomness
approximating the uniform distribution above—see Fig. 1;
so, intuitively, on its own it does not alter too much the
classical capacity of the channel, but if paired with the
right resources can increase the quantum capacity.
A comment on why we need the rather large register A1,

most of which is discarded anyway. In fact, the size (pa-
rametrized by k) has a double purpose: on the one hand, we
need A11 to be close to maximally mixed for most inputs.
But more importantly, to make it very ‘‘costly’’, though not
impossible, to use entanglement with another system to
access the index J1 (see the proof of Theorem 1).
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FIG. 1 (color online). The channel T k
N : in the lower part it

contains N (with input register A2, output register B2, and
environment E). It also has another input register A1 of dimen-
sion c ¼ jEj2k, which we view in a fixed way as a tensor product
of k jEj2-dimensional systems A11; . . . ; A1k, each coming with a
fixed computational basis fjjigj¼1;...;jEj2 . This big register is

subjected to a random unitary rotation U, where U is chosen
from the Haar measure and subsequently output (a classical
description of it) in register B0. All registers A12; . . . ; A1k are
discarded, only A11 is measured in the computational basis, and
the result j used to control a unitary transformation (Weyl
operator) Wj on the environment E, which is then output in

the register B1. A formal definition can be found in the supple-
mentary material [22].
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The additivity violation.—Now, if we knew that the
Holevo quantity �ðT k

N Þ were additive forT k
N , we would

have CðT k
N Þ ¼ �ðT k

N Þ. Since it is possible to show that

�ðT k
N Þ � �ðN Þ þ oð1Þ—this is a special case of

Theorem 1 below—, we would have an upper bound

PðT k
N Þ � CðT k

N Þ � CðN Þ þ oð1Þ: (7)

While we are not able to show additivity for the channels
T k

N , the above relation is nevertheless true. In fact, we

have the following general theorem, proved in full in the
supplementary material section [22].

Theorem 1.—For any channel N with input space A,
output space B and environment E, and any integer k, let
�ðkÞ ¼ 1

k ð5þ 4 logjEjÞ. Then, for arbitrary channel E,

�ðN � EÞ � �ðT k
N � EÞ � �ðN � EÞ þ �ðkÞ: (8)

As a consequence,

CðN Þ � CðT k
N Þ � CðN Þ þ �ðkÞ:

On the other hand, we can get a lower bound on
PðT k

N �AÞ, where A is the 50% erasure channel of

input dimension c; note that by the no-cloning principle,
PðAÞ ¼ QðAÞ ¼ 0. Since the private classical capacity is
not smaller than the quantum capacity, which is in turn
lower bounded by the coherent information, we evaluate
the coherent information of the channel T k

N �A. Let us

look at an input state � as follows: Alice prepares a
maximally entangled state �A1C of dimension c� c and
feeds the two halves into the control input (A1) and the
50% erasure channel (C; its quantum output we also denote
C, and the erasure flagD). She feeds another arbitrary state
�A2 , whose purification is denoted as j’iAA2 , into the data
input and keeps the system A. So the final state after the
channel action is

!AB0B1B2CD ¼ ðidA �T k
N �ACÞð�A1C � ’AA2Þ:

The coherent information, with respect to this state, is

Icð�A1A2C;T k
N �AÞ ¼ HðB1B2CDjB0Þ

�HðAB1B2CDjB0Þ:
By an argument similar to that in [20], we divide the

computation into two cases: the information sent intoA is
erased or not erased,

Icð�A1A2C;T k
N �AÞ ¼ 1

2ðIerasedc þ Inot erasedc Þ:
In the erased case, the state is decoupled between AB2 and
B0B1C, so the coherent information simplifies to

Ierasedc ¼ HðB2Þ �HðAB2Þ
¼ HðN ð�ÞÞ�Hððid �N Þj’ih’jAA2Þ:

When the transmitted information is not erased, Bob will
be able to correct the errors encountered by the noisy
channel N as follows. Bob reads the output B0, learning
which unitary transformation is applied by the channel

T k
N . Then he can measure C in the proper basis to get j,

and then applyWy
j to B1, recovering the environmentE. As

a result, Bob possesses the output and the environment of
N simultaneously, effectively obtaining the quantum in-
formation input into N completely. In this case, the
system B0C is decoupled from AB1B2, which is in the
pure state ð1 � VÞj’iAA2 . So,

Inot erasedc ¼ HðB1B2Þ �HðAB1B2Þ ¼ Hð�A2Þ:
Adding these two cases together, we have

Icð�;T k
N �AÞ ¼ 1

2½Hð�Þ þHðN ð�ÞÞ
�Hððid �N Þ’Þ�:

The term in brackets on the right-hand side is called
quantum mutual information (between input and output
of N ). In [21], it is proved that the maximum over � of
the right-hand side is the entanglement-assisted quantum
capacity QEðN Þ of the channel N . I.e.,

QEðN Þ ¼ max
�

Icð� � �;T k
N �AÞ;

and hence

PðT k
N �AÞ � QðT k

N �AÞ � QEðN Þ: (9)

Now, comparing Eqs. (7) and (9), also making use of
Eq. (1), we see that for all channels N such that

QEðN Þ>CðN Þ; (10)

we have, for sufficiently large k,

PðT k
N �AÞ � QðT k

N �AÞ> PðT k
N Þ � QðT k

N Þ:
Note that the channelA has zero private classical capacity
and zero quantum capacity, so this exhibits the violations
of the additivity of private classical capacity and the quan-
tum capacity at the same time.
All we need now is to find quantum channels that satisfy

Eq. (10). One example is the depolarizing channel of
arbitrary dimension d, for which both capacities are known
[13,21], Dqð�Þ ¼ ð1� qÞ�þ q 1

d1. For large d, the gap

becomes asymptotically 1
2Hðq; 1� qÞ [22].

There also exist large additivity violations: In [[23],
theorem V.1] it is proven that in sufficiently large dimen-

sion d, there exist n ¼ bðlogdÞ4c orthogonal bases B� ¼
ðjbð�Þ1 i; . . . ; jbð�Þd iÞ such that for all states �,

1

n

Xn
�¼1

HðB�j�Þ � logd� 4;

where HðB�j�Þ ¼ �Pd
i¼1hbð�Þi j�jbð�Þi i loghbð�Þi j�jbð�Þi i is

the Shannon entropy of the outcome distribution when
measuring the state � in basis B�. What this means is
that the channel N from d to dn dimensions, defined as

N ð�Þ ¼ Xn
�¼1

Xd
i¼1

1

n
hbð�Þi j�jbð�Þi ijiihijB � j�ih�jB0

;
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satisfies �ðN Þ � 4. Since the channel is entanglement-
breaking, the additivity result of [14] applies, so CðN Þ ¼
�ðN Þ � 4. On the other hand, it is straightforward to see
that QEðN Þ ¼ 1

2 logd. Thus we find that almost the entire

bandwidth of N can be activated by the presence of
entanglement. Now, to construct the example for activation
of the secret capacity by a 50% erasure channel, we ob-
serve that jEj ¼ dn ¼ dðlogdÞ4. We choose k ¼ logjEj,
and get from Theorem 1 that CðT k

N Þ � Oð1Þ, while at

the same time QðT k
N �AÞ � 1

2 logd.

Conclusion.—We showed a way of converting any gap
between classical capacity and entanglement-assisted
quantum capacity of a channel into a violation of the
additivity of the private capacity of the channel tensored
with a 50% erasure channel. In fact, the quantum capacity
of the tensor product channel is larger than the classical
capacity of the single channel.

The construction is based on a certain embedding of the
given channel into a version of the echo-correctable chan-
nels from [16]. That the pairing with the erasure channel
gives larger quantum capacity follows from the echo-
correctable reasoning of the benefit of sharing entangle-
ment. On the other hand, the upper bound on the classical
capacity relies on showing that the additional ‘‘gadgets’’
built around the given channel increase the capacity by an
arbitrarily small amount. The argument is different from
proving additivity of � of the channel (which we cannot do
for T k

N ), and also from the use of the recent continuity

bound [24] (which cannot be applied as T k
N is at finite

distance from any channel for which we know the
capacity).

Thus, we even get a new type of example for the non-
additivity of the quantum capacity Q, which is different
from that of Smith and Yard [17] as our channel is not PPT
entanglement binding. Furthermore, while in [17] the
lower bound of half the private capacity on the quantum
capacity of the tensor product was enough, here we expe-
rience even a large gap between these two quantities.
However, we also note a conceptual analogy in the con-
structions: The PPT entanglement binding channel used in
[17] derives from a so-called pbit state [25]. It provides
Alice and Bob with shared randomness—which is made
private by distributing the purification among Alice and
Bob, but in a scrambled way that makes it impossible for
them to recover much of the entanglement. Our channel
randomizes the environment and hence gives it to Bob in
an encrypted way, limiting the receiver’s knowledge about
the noise encountered by the channel. In the construction
of [17] as in the present one, the availability of additional
resources allows Alice and Bob to break the encryption and
access the entanglement.
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