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We examine theoretically the Casimir effect between a metallic plate and several types of magnetic

metamaterials in pursuit of Casimir repulsion, by employing a rigorous multiple-scattering theory for the

Casimir effect. We first examine metamaterials in the form of two-dimensional lattices of inherently

nonmagnetic spheres such as spheres made from materials possessing phonon-polariton and exciton-

polariton resonances. Although such systems are magnetically active in infrared and optical regimes, the

force between finite slabs of these materials and metallic slabs is plainly attractive since the effective

electric permittivity is larger than the magnetic permeability for the studied spectrum. When lattices of

magnetic spheres made from superparamagnetic composites are employed, we achieve not only Casimir

repulsion but almost total suppression of the Casimir effect itself in the micrometer scale.
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The Casimir force between two adjacent conducting
surfaces [1] is of quantum nature as it arises from the
exchange of virtual photons between the two surfaces,
i.e., from the net momentum exchange of zero-point vac-
uum fluctuations confined between the surfaces. The the-
ory for the Casimir force between two planar slabs of
arbitrary material, in thermal equilibrium, has been pro-
vided by Lifshitz [2] and, almost always, results in an
attractive force. Casimir forces manifest themselves in
micro- and nanoscale devices such as micro- and nano-
electromechanical systems (MEMS and NEMS, respec-
tively) which contain planar objects with large values of
surface-to-volume ratio. In these systems, the Casimir
forces cause individual parts in MEMS and NEMS to
attract, slide, and/or stick together, resulting in failure of
the device. It is, therefore, of paramount technological
importance to design material structures for the control
and manipulation of Casimir forces in MEMS/NEMS. The
neutralization of Casimir forces by surface repulsion at
short distances followed by attraction at larger distances
has been the holy grail of macroscopic QED.

According to Lifshitz theory, a repulsive force arises
when the surfaces have different electric permittivities �
and the medium between them possesses a permittivity in
between the values of the two slabs [3]. Usually this
situation corresponds to the case where the space between
the two slabs is filled with a liquid. Based on this, a recent
experiment has confirmed the existence of repulsive force
between a gold sphere and a silica surface immersed in
bromobenzene liquid [4].

A repulsive Casimir force may also arise between a
‘‘mostly electric’’ and a ‘‘mostly magnetic’’ slab [5], i.e.,
between a slab with � > � and one with � < �, where �
is the magnetic permeability. The differences in � and
� should be significant within the near infrared and/or
visible regions in order to have a countable contribution

to the net Casimir force. However, the response of natu-
rally occurring ferromagnetic materials usually lies from
the kHz up to the GHz regime. In this respect, there
have been theoretical proposals based on effective-medium
approximations claiming that such a situation is possible
between a metallic slab (mostly electric) and a mostly
magnetic metamaterial [6,7]. The latter are subwavelength
artificial structures mimicking a homogeneous medium
and designed to possess a desired electromagnetic
feature such as resonances in the magnetic permeability
within a given spectral region.
Based on an effective-medium description, it was sug-

gested [8] that the use of a magnetic metamaterial without
a Drude-type response in the long-wavelength limit, e.g., a
metamaterial with polaritonic constituents, can induce a
repulsive force to a metallic plate. However, the same
authors in a more recent work [9] claimed that this was
not feasible due to the trivial values of the effective mag-
netic permeability in the imaginary-frequency domain. In
order to provide a definite answer to the above issue, one
has to depart from the effective-medium approach and
classical Lifshitz theory for homogeneous plates and resort
to contemporary electromagnetic solvers which solve ex-
actly Maxwell’s equations and describe accurately the
zero-point vacuum fluctuations [10–13]. In this Letter, by
employing a rigorous multiple-scattering approach we
show that the prediction of the effective-medium theory
is correct and, indeed, slabs of polaritonic materials are not
expected to exhibit a repulsive Casimir effect. However,
using the same approach we show that metamaterials of
spheres made from superparamagnetic nanocomposites
result in total cancellation of the Casimir effect in the
micrometer scale while, at the same time, exhibiting
Casimir repulsion for small distances.
The zero-temperature Casimir interaction energy for

two slabs of inhomogeneous metamaterials corresponding
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to the same two-dimensional (2D) periodic lattice is pro-
vided by the generalization of the corresponding formula
for two homogeneous slabs [9]

E=S0 ¼ @

Z 1

0

d�

2�

Z
SBZ

d2kk
ð2�Þ2 lndet½1�R1R2�fpgg; (1)

whereR1 andR2 are the reflection matrices for each one of
the two Casimir components which may be either a homo-
geneous slab or a finite slab of a metamaterial. In the
matrix notation fpgg, the symbol g stands for the
reciprocal-lattice vectors associated with the given 2D
lattice and p ¼ 1, 2 refers to the two different polarization
states of the electromagnetic field. R1 and R2 are calcu-
lated on the basis of a rigorous layer-multiple-scattering
theory [14,15]. The phase factors representing the
multiple-scattering events between the two slabs are in-
corporated within the definitions of R1 and R2 [14]. The
kk integration in Eq. (1) is performed within the surface

Brillouin zone (SBZ) of area S0 associated with a given 2D
lattice. The spectral integration in Eq. (1) is done for
imaginary frequencies ! ¼ i� provided that � and � con-
tained therein are causal. The Casimir force F is given by
the negative derivative of Eq. (1) with respect to the
separation L between the two slabs. In the calculations
that follow, the SBZ integration of Eq. (1) is performed by
subdividing progressively the SBZ into smaller and smaller
squares, within which a nine-point integration formula is
very efficient. Using this formula we achieved excellent
convergence with a total of 576 points in the SBZ. Also, the
inclusion of 12 reciprocal-lattice g-vectors in the matrix
representation of R1 and R2 provided convergent results.
Finally, since the frequency integration is performed along
the imaginary axis, the lattice sums contained in matrices
R1 and R2 are performed by summation in direct space
since Ewald-summation schemes do not converge [14].

The layer-multiple-scattering method which provides
the matrices R1 and R2 in Eq. (1) provides the trans-
mission, reflection, and absorption coefficients of an elec-
tromagnetic wave incident on a composite slab consisting
of a number of layers which can be either planes of non-
overlapping particles with the same 2D periodicity or
homogeneous plates. For each plane of particles, the
method calculates the full multipole expansion of the total
multiply scattered wave field and deduces the correspond-
ing transmission and reflection matrices in the plane-wave
basis.

First, we calculate the Casimir force between a metallic
slab and 2D square array of polaritonic spheres, i.e.,
spheres made from materials supporting polaritonic exci-
tations. In these arrays the effective permeability �eff

assumes nontrivial values [much larger or much smaller
(even negative) than unity] in the infrared [16–18] and
visible regimes [19,20].

We begin our study with the case of a square array of
microspheres made from LiTaO3. LiTaO3 is an ionic ma-
terial exhibiting phonon-polariton excitations [21], and as

such, the corresponding electric permittivity has the form
of a single-resonance Drude-Lorentz form, �ð!Þ ¼
�1½1þ ð!2

L �!2
TÞ=ð!2

T �!2 � i!�Þ� where �1 ¼
13:4, � ¼ 0:94� 1012 rad= sec. The respective !T ¼
26:7� 1012 rad= sec and !L ¼ 46:9� 1012 rad= sec are
the transverse and longitudinal optical phonon frequencies
[22]. The period a of the square lattice is taken to be a ¼
c=!T ¼ 11:24 �m and the radius of the spheres S ¼
0:5c=!T; i.e., we deal with a close-packed array of
spheres. The effective parameters �eff and �eff can be
accurately calculated from the extended Maxwell-Garnett
theory (EMG) [19,20,23,24].
The effective permeability �eff of the above structure

exhibits strong resonant behavior in a spectral region be-
low !T as shown in Fig. 1(a), owing to the large polariza-
tion currents induced by incident light at the Mie
resonances of the individual spheres [17]. However, as
seen from Fig. 1(a), the large values assumed by the
LiTaO3 permittivity introduce a strong resonance of �eff
as well. For the case of the Casimir force, one actually
needs the spectrum of �eff and �eff for imaginary frequen-
cies as depicted in Fig. 1(b). Evidently,�eff assumes trivial
values around unity in agreement with Ref. [9], and the
metamaterial is mostly electric. Therefore, a repulsive
Casimir force is not anticipated when a finite slab of the
above polaritonic crystal is placed next to a metallic slab.
In order to confirm the above we have considered the

setup of Fig. 2: a single plane of the above LiTaO3 spheres
is placed next to a gold plate. The permittivity of gold is
provided by the Drude formula, i.e., �ð!Þ ¼ 1�
!p=½!ð!þ i!��1Þ� with @!p ¼ 3:71 eV and ð!p�Þ ¼
20. Figure 3(a) shows the Casimir force per unit area
[negative derivative of Eq. (1)] for the above setup, nor-
malized to the value of the classical Casimir force FC

between two perfect conductors: FC ¼ �@c�2=ð240L4Þ.
The force is clearly attractive but much weaker than FC. At
the same time, it drops more slowly with L compared to FC

since the ratio F=FC increases with L.

FIG. 1 (color online). Effective permeability �eff and permit-
tivity �eff of a crystal of close-packed LiTaO3 spheres with
radius S ¼ 0:5c=!T ¼ 5:62 �m for (a) real and (b) imaginary
frequencies, as calculated by the EMG theory.

PRL 103, 120401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

18 SEPTEMBER 2009

120401-2



A similar picture is obtained for a nanosized array of
CuCl spheres. CuCl is a semiconductor which possesses a
strong Z3 exciton line at 386.93 nm [25]. Around the
exciton frequencies, the dielectric function of the CuCl is
given by �sð!Þ ¼ �1 þ A�=ð!0 �!� i�Þ, where A ¼
632 and it is proportional to the exciton oscillation
strength. The rest of the parameters for CuCl are [25]
�1 ¼ 5:59, @!0 ¼ 3:363 eV, and @� ¼ 5� 10�5 eV.
Figure 3(b) shows the normalized Casimir force F=FC

for a 2D array of close-packed CuCl nanospheres of radius
S ¼ c=!0 ¼ 29:4 nm in the setup of Fig. 2. This time, the
separation L is of the order of nanometers. Again, the
Casimir force is attractive, it decays more slowly than
FC, and it is 2 orders of magnitude weaker than FC. We
expect that a similar picture holds for other polaritonic
metamaterials, either in the infrared (e.g., SiC, TlBr,
TlCl) or visible regimes (e.g., Cu2O).

The agreement between the EMG theory and the rigor-
ous approach based on Eq. (1) is due to the integration over

imaginary frequencies i� which makes all wave compo-

nents evanescent with rate kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=cÞ2 þ ðkk þ gÞ2

q
.

Waves close to the center of the SBZ, i.e., kk ! 0, are
those which dominate the Casimir effect; however, the
limit kk ! 0 (long-wavelength limit) is the region of

validity of effective-medium theories such as the EMG
theory considered here.
In pursuit of a purely magnetic system which would

provide Casimir repulsion together with a metallic slab,
an obvious choice would be naturally occurring ferromag-
netic materials. Unfortunately, these exhibit a magnetic
response far below the infrared and optical regimes as is
required for the Casimir effect. However, very small nano-
particles of ferromagnetic materials become superpara-
magnetic in the infrared regime due to the drastic
reduction of the relaxation time � needed for the (perma-
nent) magnetic dipoles to align parallel to an applied
magnetic field. We therefore consider a composite material
consisting of 3 nm Ni nanoparticles embedded in an insu-
lating matrix such as Al2O3. By extending Onsager’s the-
ory, it can be shown [26] that such a nanocomposite
material exhibits superparamagnetic behavior in the infra-
red regime. Since alignment of the magnetic dipoles in Ni
is analogous to the alignment of (permanent) electric di-
poles in an insulator under an external electric field, the
permeability �c calculated in Ref. [26] was fitted by a
Debye relaxation model, i.e., �cð!Þ ¼ �1 þ �=ð1�
i!�cÞ with �1 ¼ 0:733, � ¼ 9:98, and ��1

c ¼
1:78� 1012 sec�1. The corresponding permittivity �c is
provided by the Clausius-Mossoti formula, �cð!Þ ¼
�Al2O3

½ð1þ 2fÞ�Ni þ 2ð1� fÞ�Al2O3
�=½ð1� fÞ�Ni þ ð2þ

fÞ�Al2O3
�, where �Ni, �Al2O3

are the permittivities of Ni and

Al2O3, respectively, and f is the volume filling fraction
occupied by the Ni nanospheres and is taken as f ¼ 0:2
[27]. We note that instead of the Clausius-Mossoti formula,
one can equally make use of the EMG theory and obtain
the same results for �c.
We consider a square lattice of microspheres (S ¼

84 �m) made from the above nanocomposite [Ni-Al2O3,
see Fig. 4(a)] and optical properties described by �c, �c
given above. The Ni-Al2O3 microspheres are arranged in a
close-packed configuration as in Fig. 2. The imaginary-
frequency spectra of the effective parameters �eff , �eff of
the above lattice, as calculated by the EMG theory, are
drawn in Fig. 4(b). It is evident that�eff is much larger than
�eff for a wide range of frequencies promising the emer-
gence of repulsive Casimir forces. Indeed, by observing the
solid line of Fig. 4(c), we see that the Casimir force
becomes repulsive for distances L < 16 �m. Moreover,
although it is not clear from the broken line of Fig. 4(b)
(log scale is needed), the most striking result of Fig. 4(b) is
the fact that the ratio F=FC becomes very small (e.g., for
L ’ 1 �m, F=FC � 10�8) suggesting almost total sup-
pression of the Casimir effect. In previous work where
toy-model functions for �eff and �eff of the metamaterials
have been employed [7–9], a Casimir repulsion appears at

FIG. 3. Normalized Casimir force F=FC for the setup of Fig. 2
where the square lattice consists of (a) close-packed LiTaO3

spheres of radius S ¼ 5:62 �m, and (b) close-packed CuCl
spheres of radius S ¼ 29:4 nm.

FIG. 2 (color online). Computational setup for Figs. 3 and 4: a
square lattice of close-packed spheres placed opposite to a
metallic slab. The distance between the slab and the surface of
a sphere is denoted by L.
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intermediate and long separations between the metamate-
rial and the metallic slab while for short distances the
Casimir force is attractive. Our ab initio results which
indicate repulsive Casimir force at short distances (L !
0) verify the prediction of Casimir repulsion at small
separations occurring between a purely dielectric and a
purely magnetic material [7,28]. Casimir repulsion at all
distances has been also measured in Ref. [4].

In conclusion, on the basis of a rigorous electromagnetic
multiple-scattering theory for imaginary frequencies, we
have shown that Casimir repulsion cannot be achieved with
metamaterials made from purely dielectric materials de-
spite their magnetic activity in the desired frequency re-
gions (infrared and optical). However, metamaterials of
microspheres made from superparamagnetic nanocompo-
sites embedded in an insulating matrix behave as mainly
magnetic metamaterials and result in Casimir repulsion at
short distances. Moreover, in the region of Casimir repul-
sion, the force values are also much suppressed compared
to the ordinary Casimir effect, promising application in
neutralizing quantum stiction in MEMS-based devices.
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