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We consider the Helmholtz problem in the context of the evolution of uniform initial distribution of a

physical attribute in general porous media subject to a partially absorbing boundary condition. Its spectral

property as a reflection of the boundary geometry has been widely exploited, such as in biological and

geophysical applications. We consider the situation where the critical assumptions which enable such

applications break down. Specifically, what are the consequences of an inhomogeneous absorption

strength? Using perturbation theory, exact theoretical results, and numerical simulations on random

sphere packs, we identify the regions of parameter space in which such inhomogeneity is important and

those in which it is not. Our findings shed light on the issue that limits the mapping between the diffusion

or relaxation spectrum and the underlying boundary geometry.
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The spatiotemporal evolution of the density of an attrib-
ute carried by diffusing agents, subject to a partially ab-
sorbing boundary, occurs in a variety of scientific
disciplines that ranges from NMR relaxometry in porous
media [1,2] and biomedicine [3], waves in a membrane [4],
to migration of genes and cultural influences [5]. In its
minimal form, the problem is formulated as the Helmholtz
problem, but in real systems, variations in the absorption
strengths and local geometry complicate the matter, and
changes in part of its spectrum or phantom length scales
may appear [6]. Empirical data from such systems, usually
lacking the reference system with which to compare, beg
the question: Is such a feature inherent in the nature of the
underlying dynamics (with a clean boundary) or due to the
haphazard elements on it? We are directly motivated by
NMR relaxometry in porous media in which issues of such
nature have been long standing. We consider the situation
where the draining strength, �ðrÞ, varies from point to
point on the boundary surface and probe how it intertwines
with the boundary geometry. Although some studies exist
on the aspects of the variable �ðrÞ [7–10], their systematic
investigation is still lacking. In this Letter, we develop a
theoretical framework which incorporates both effects on
an equal footing by treating the spatial fluctuations of �ðrÞ,
��ðrÞ as a perturbative parameter and identify the salient
spectral consequences. The method is then applied to a
simple problem, for which we obtain an exact solution for
comparison. For realistic pore geometry and ��ðrÞ varia-
tions, we perform numerical simulations which show that
the effect depends sensitively on the symmetry properties
of both ��ðrÞ and the eigenmodes of the boundary-value
problem associated with the uniform �.

We start with a generic and widely studied problem: the
evolution of a local density �ðr; tÞ of a scalar attribute
carried by entities diffusing (with diffusivity D) inside a
general pore space (Vp) defined by the pore-matrix inter-

face (�), which drains the attribute with a strength parame-

trized by the parameter �0ð>0Þ upon contact. Defining the
density operator as J � �DðrÞr andH � r � J, the local
continuity of � leads to the classic Helmholtz equation,
and in seeking its solution in terms of the eigenmodes (i.e.,

f�0
pðrÞe��0

ptg), one arrives at H�0
pðrÞ ¼ �0

p�
0
pðrÞ (p ¼

0; 1; . . . ) where each mode is subject to the Robin’s con-
dition n̂ � J�pðrÞ ¼ �0�

0
pðrÞ on the boundary. We super-

script �0
p and �0

p to indicate that it is for the uniform �0.

From the properties of H and �0, it follows that �
0
p are

real and � 0; orthonormal eigenmodes �0
p can be repre-

sented as real functions. The connection between the spec-
trum of H and the boundary shape (pore geometry) had
been noted by Kac and others [11–13] and its various
aspects have been explored in a variety of scientific dis-
ciplines [14–17]. In particular, the relaxation of polarized
proton spins carried by fluid molecules in porous media
such as rocks and biological samples is a pertinent ex-
ample, as the relaxation is enhanced by the fluctuating
dipole field near the interface [18,19]. The evolution of
the total attribute (magnetization in the case of NMR)
M � R

Vp
dr�ðr; tÞ, initially uniform, then follows

MðtÞ ¼ P
pe

��ptja0pj2 where a0p ¼ R
Vp

�0
pðrÞdr. In the

case of a simple, closed boundary with a single defining
length scale (such as the radius a in a spherical pore), this
enhanced relaxation may be limited either by the strength
of relaxation at the boundary or by the diffusivity D, and a
control parameter � � �0a=D emerges to separate the
regimes which have distinct spectral properties (i.e., ap
and �p, p ¼ 0; 1; . . . ). In the limit where � � 1, it was

observed that a0 � 1 for the slowest decay mode (p ¼ 0),
and also that �0

0 ¼ �0S=Vp ( ¼ �03=a for a sphere) di-

rectly proportional to the surface-to-volume ratio of the
pore. In the other limit, faster modes generally gain in
weight, and �0

0 � �1 � D�2=a2. In many situations, the

relationship between �0
0 and S=Vp is exploited to map the

observed spectral distribution fapg to a distribution of pore
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sizes. For this mapping to work, however, the pores should
be isolated from each other, each satisfying the condition
� � 1, and finally �0 should be uniform [6]. In most real
porous media, the local variations in geometry and the
strength of � (we will call the variation as its texture
from now on) make it no longer feasible to characterize
the dynamics with a single parameter �. It is straightfor-
ward to show that, for anMðtÞ arising from a collection of
pores distributed in sizes with uniform � (all satisfying
� � 1), one may as well construct an alternative model
with pores of the same size but with an appropriately
chosen range of � strengths. Furthermore, the pore space
forms an extended, multiply connected manifold, with
possible local variations in the diffusive-connectivity [20]
of its constituents. It becomes increasingly inadequate to
employ notions such as pore sizes and throats, analogous to
the way one should progress from atomic orbitals to the
band theory and further on to accommodate strong disorder
in solid state physics. In this approach, a few properties of
the eigenspectrum become key elements [21]. In the fol-
lowing, we seek to quantify how inhomogeneous �ðrÞ
affects the spectral signatures and their experimental
manifestation.

Let us first generalize the Helmholtz problem by sub-
stituting �ðrÞ ¼ �0 þ ��ðrÞ for �0 with the requirementH
� ��ðrÞd� ¼ 0. Under this boundary condition, we pur-

sue the new set of eigenmodes f�pg with eigenvalues �p.

Using the self-adjointedness of H and Green’s theorem,
we obtain the following relationship [21,22]:

�p ¼
I
�
�ðrÞj�pðrÞj2d�þ

Z
Vp

DðrÞjr�pðrÞj2dr (1)

which expresses all eigenvalues as a sum of surface inte-
gral and the diffusion-controlled volume integral, analo-
gous to the energy of a particle in a potential well given in
terms of the potential and the kinetic part. The character of
each eigenmode can be understood in terms of the com-
petition between these two components. A general obser-
vation can be made for fast modes that the second
component dominates and �p for p > 0 becomes progres-

sively insensitive to �0 and ��. We define �p ¼ �0‘p
D by

introducing a length scale parameter for each mode ‘p �R
drðr�pÞ2H
d�ðr�pÞ2

. Applied to the p ¼ 0 mode, the criterion �0 �
or � 1 generalizes the earlier observations made for sim-
ple closed pore geometry [19] and is reminiscent of the �
parameter for the electrical conductivity of pore filling
fluid [23]. The spectral weight for the slowest mode a0 is
significantly weakened for �0 � 1, which leads to MðtÞ
with a multiexponential characteristic that had invited the
potentially misleading [6] interpretation based on isolated
pore size distributions. Instead, we derive a relationship
that shows that this weight is directly related to the spatial
fluctuation of the slowest eigenmode:

ja0j2¼1�Vp

�Z
Vp

drj�0ðrÞj2�
��������
Z
Vp

dr�0ðrÞ
��������

2
�
: (2)

Note that these rigorous relationships [Eq. (1) and (2)]
apply to general boundary shape and both uniform and
inhomogeneous �. It is also straightforward to prove that
slope of logMðtÞ at early times should remain robust
against the fluctuations ��ðrÞ, �limt!0

d
dt logMðtÞ !

�0
S
V
, but the range over which this is valid could be

severely limited depending on the strength of j��j. Many
authors had considered the so-called mean lifetime � ¼P

pa
2
p=�p [2,7,8], for which we obtain � ¼ �0 � 1

Vp
�H

� d�u00ðrÞ��ðrÞu0ðrÞ where u0 � lims¼0

R1
0 �ðr; tÞ �

e�tsdt with �ðr; tÞ being the local density under �ðrÞ,
and similarly with u00 and �0 under the uniform �0.

The eigenvalue �0 and the spectral weight ja0j2 of the
slowest mode are the most accessible indicator for the
change in the boundary condition �0 ! �0 þ ��ðrÞ. In
the following, we therefore focus on the fractional shift

in the slowest eigenmode ��0

�0
0

� �0
0
��0

�0
0

which determines the

longtime slope of logMðtÞ vs t. Figure 1 summarizes
schematically these general observations. We first derive

a perturbative solution for ��0

�0
0

for an arbitrary pore geome-

try and �ðrÞ texture, and compare the result with an exact
solution. Assuming that the complete eigenmodes f�0

pg
with �0

p’s are worked out already for the uniform �0, we

put the eigenmodes for the new boundary condition with
�ðrÞ as

�pðrÞ ¼ cp½�0
pðrÞ þ

X
q�p

apq�
0
qðrÞ	 þQpðrÞ (3)

where cp is the normalization constant. We introduce the

auxiliary function QpðrÞ � �pðrÞ �
R
dr0P ðr; r0Þ�pðr0Þ

using projection onto the Hilbert space spanned by the
eigenmodes f�0

pg with uniform �0 via P ðr; r0Þ ¼P
p�

0
pðr0Þ�0

pðrÞ. Note that formal inclusion of QpðrÞ is

necessary at this point to satisfy the �ðrÞ-boundary condi-
tion since�p, if it were to be spanned by f�0

pg alone, would
only satisfy the uniform �0 condition. Using the orthonor-
mality of the complete sets f�pg and f�0

pg, respectively, we

λ0 

λ0
0 

ρ

ρ

FIG. 1 (color online). Schematics for the difference between
MðtÞ with a uniform and an inhomogeneous � with the finial
slopes given by �0

0 and �0 as indicated by the broken curves. The

accompanying change in the spectral weight distribution is
reflected in the difference between W � 1� ða0Þ2 and W0 �
1� ða00Þ2.
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obtain a recursive equation for apq:

apq ¼
ð1� �pqÞ
�p � �0

q

�X
r

apr��qr þ �~�qp

�
S

Vp

þ �pq (4)

where we define overlap integrals ��qr
S
Vp

�H
� d��0

q���
0
r and �~�qp

S
Vp

� H
d���

0
q��Qp. Via itera-

tive substitutions, we obtain the desired result in a system-
atic power expansion up to ��2:

�p ¼ �0
p þ S

Vp

ð��pp �
X
q�p

��pq��qp

�0
q � �0

p

S

Vp

þ �~�ppÞ: (5)

Defining fpðrÞ � 1
cp

P
q�

0
qðrÞH� d��0

q���
0
p, a projection

of ��ðrÞ spanned by f�0
pg, we find that Qp should satisfy

the inhomogeneous equation: ðH � �pÞQpðrÞ ¼ fpðrÞ
subject to the condition �0QpðrÞ � n̂ðrÞ � JQpðrÞ ¼
� 1

cp
��ðrÞ�0

pðrÞ on the boundary. Note that Qp ¼
½1� P 	�p may then be viewed as a superposition of

waves with wavelength
ffiffiffiffiffiffiffiffiffiffiffiffi
D=�p

q
emanating from a surface

localized source ½1� P 	��ðrÞ. For p ¼ 0, our main focus,
the effective source is averaged over a diffusion lengthffiffiffiffiffiffiffiffiffiffiffiffi
D=�0

p
, as indicated by the presence of the �pQpðrÞ term

in its governing equation. This leads to �~�00 � 0 as we find
in the perturbative solution of the spherical pore [22]. For
general pore geometry and �ðrÞ texture, we observe the
following: Note that the first order term, ��00, depends
sensitively on the symmetry and the profile of the mode,
ð�0

0Þ2, along the boundary in relation to ��. While it

vanishes for the simple situations where �0
0 is uniform

along the boundary, it may not do so when there exists
significant variation of �0 as when the complex pore
geometry dictates. For empirical MðtÞ with a multiexpo-
nential characteristics, as often observed in geophysical
applications [18], Eq. (2) suggests that one cannot safely
assume �0

0ðrÞ is uniform along the contours of the bound-

ary. The strength of the first order contribution is further
enhanced when the texture ��ðrÞ varies commensurate
with �0

0ðrÞ on the interface [6].

Now we turn to a spherical pore of radius a and seek
exact solutions for both uniform �0 and �ðrÞ of the form
(with � 
 1) �ðrÞ ¼ �0½1þ �fð	Þ	 where we consider
the cases of a stepwise [fð	 < �=2Þ ¼ �1; fð	 � �=2Þ ¼
1] and a sinusoidal [fð	Þ ¼ cosð	Þ] textures. We look for
the eigenmodes [24] in the form of �kðrÞ ¼P1

L¼0 sk;LjLðkrÞY0
Lð�Þ where jLðxÞ is the spherical Bessel

function, Y0
L’s are the spherical harmonic functions with

M ¼ 0 (due to the azimuthal symmetry). k represents an
infinite set of numbers that allow for a nontrivial solution
for the coefficients sk that facilitate the boundary condition
be met:

2�
X
L

4L;L0 jLðkaÞsk;L

� ½jL0 ðkaÞ þ kafjL0þ1ðkaÞ � jL0�1ðkaÞg	sk;L0 ¼ 0 (6)

where4L;L0 ¼ R
d�fð	ÞY0

L0Y0
L. Viewed as a homogeneous

matrix equation K � sk ¼ 0, the eigenvalues are found
from the condition that det ½K	 ¼ 0. We solve this by
truncating the matrix to a finite, though large, size and
searching numerically for the root. The fractional differ-
ence in the lowest eigenvalue (�0 ¼ Dk2min) between the

uniform and nonuniform cases are shown in Fig. 2. First
panel shows the stepwise texture with � ranging from 0.01
to 1.0 as indicated. The results from both the exact solution
(solid lines) and the second order perturbation (points)
agree very well for � < 2 for all values of �, while for
� > 2, the agreement deteriorates progressively as� grows
beyond 0.5. �0 itself is shown in the second panel. An
anomaly occurs in the � � 1 limit with � ¼ 1 for which
�ðrÞ vanishes on half of the hemisphere. In this special
case, the limit � � 1 acquires a new diffusion-controlled

time scale (i.e., �1=�0 is quadrupled from �1 ¼ a2

D�2 to

�1=4, as the slowest mode is now controlled by diffusion
from the � ¼ 0 zone to the other end � ! 1 over the
distance of 2a). This crossover is missing for the sinusoidal
texture with � ¼ 1 (in the third panel) for which only a
nodal point (	 ¼ �) exists on which �ðrÞ vanishes. This
contrasting behavior is also verified in numerical simula-
tions. Using the perturbative approach, it is now straight-
forward to incorporate more complicated �ðrÞ textures for
small �, using Fig. 2 as a guide for its validity.

FIG. 2. Top: Results for a sphere of radius a and varying �
values with the hemispherical � texture. The solid lines show
��0=�

0
0 as obtained from the exact formulation described in the

text. The filled points represent the second order perturbation
result. Bottom left panel shows the �0=�1 for varying �’s as
above. Bottom-right panel compares ��0=�

0
0 with � ¼ 1:0 for

the hemispherical and the sinusoidal textures.
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Next, we consider the random glass bead pack as an
example of realistic porous media for which well-
controlled experiment and simulations could be carried
out. Figure 3 shows the results from random walk simula-
tions based on the Finney pack [25] in which we realize
three different � textures that clearly violate the conditions
necessary for the perturbative approach. Type I shows the
strongest deviation from the uniform case (and is analo-
gous to the case of the hemispherical � of Fig. 2 with ��
1) as we randomly assign a value of 0.16 or 1:84� �0 to
each grain with equal probability. In this case,
��0=�

0
0=�

2 � 1:22 is significantly larger than in the closed
sphere even though � ¼ 0:12. This is likely due to the
existence of wider spatial separations between the two �
values, as expected in the pore morphology of a random
packing. Type II draws randomly from a distribution of �
values. Type III uses a texture generated using a correlated
random noise [26]. In this case, values of ��ðrÞ are corre-
lated over just a fraction of the bead radius, separating the
correlations of boundary shape variation from that of
��ðrÞ. Note that even though such ��ðrÞ has a wider
distribution (bottom panels show the histogram and graph-
ical rendition of each), the diffusive smearing greatly
reduces its effect, and we obtain a result virtually indis-
tinguishable from the uniform case. Similar observation
had been made numerically by Valfouskaya et al. [9].

These textures cover a wide range of patterns relevant for
natural media and applicable to bead packs [27] and other
artificial structures [3].
We wish to acknowledge professor Adrianus T. de Hoop
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