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We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima

(CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the

formation of zonal jets. We use a generalized Fjørtoft argument for the energy, enstrophy, and zonostrophy

and show that they cascade anisotropically into nonintersecting sectors in k space with the energy

cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show

that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjørtoft argument.
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Introduction.—Zonal jets are prominent features in geo-
physical fluids, e.g., the atmospheres of Jupiter, Saturn [1–
3], and Earth [4,5] as well as the Earth’s oceans [3,5,6].
They have also been observed in fusion plasmas [7] and are
important because they can suppress the small-scale turbu-
lence and block the transport in both geophysical settings
[8] and in plasmas [7,9,10].

One of the main zonal jet generation mechanisms con-
sidered in the literature is the anisotropic inverse cascade
[9,11–13] which brings the energy from initial small-scale
turbulence to the large-scale zonal flows in a local in scale
‘‘step-by-step’’ transfer mechanism. Although the inverse
cascade in both geophysical quasigeostrophic (QG) and
plasma drift turbulence is similar to that of the 2D Navier-
Stokes (NS) turbulence [14,15], the nonuniform rotation of
geophysical fluids and plasma inhomogeneity make such a
cascade anisotropic leading to condensation into large-
scale zonal flows rather than round vortices [11–13]. In
this Letter, we will follow the approach of [16,17] which is
most relevant and asymptotically rigorous when the QG or
drift turbulence is weak. In this case, the turbulence is
dominated by waves which are involved in triad interac-
tions and is shown to conserve an additional positive
quadratic invariant [16–18], which, together with the other
two quadratic invariants, the energy and the potential ens-
trophy, are involved in a triple cascade process which can
be described via an argument similar to the standard
Fjørtoft argument, originally developed for the 2D NS
turbulence [14]. Considering its important role in the zo-
nation process, hereafter we will label the extra invariant as
zonostrophy.

Previous work [16,17] has been limited to considering
either very large scales, those longer than the Rossby
deformation or Larmor radius, or to the scales which are
already anisotropic and are close to zonal. Here, we focus
on the special case when the scales are much smaller than
the deformation or Larmor radius, which is the most im-
portant and frequently considered limit. We will see below
that the zonostrophy expression for such small-scale tur-
bulence is positive and scale invariant. Thus, we can once

again apply the generalized Fjørtoft argument developed in
[16,17] which contains an additional information with
respect to the argument presented in [19]: it predicts not
only zonation but also k space paths of the three invariants
during the zonation process. In this Letter, we numerically
simulate the QG or drift turbulence for different levels of
initial nonlinearity to confirm the conservation of zonos-
trophy and to detect these k space flow paths of the three
invariants, thereby demonstrating zonostrophy’s important
role in directing the energy to the zonal jet scales.
Charney-Hasegawa-Mima model.—Geophysical QG

flows and plasma drift turbulence are often mentioned
together because some basic linear and nonlinear proper-
ties in these two systems can be described by the Charney-
Hasegawa-Mima (CHM) equation [20,21] which in k space
is

@t ĉ k ¼ i!k ĉ k þ 1

2

X

k1þk2¼k

Tðk;k1;k2Þĉ k1
ĉ k2

; (1)

where ĉ k is the Fourier transform of the stream function,

!k ¼ � �kx
k2

is the frequency of the linear waves (Rossby

waves or drift waves in the geophysical and plasma con-
texts, respectively), � is a constant proportional to the
gradient of the horizontal rotation frequency or of the
plasma density, k ¼ jkj, and

Tðk;k1;k2Þ ¼ � ðk1 � k2Þzðk21 � k22Þ
k2

(2)

is the nonlinear interaction coefficient.
Conservation of energy, enstrophy, and zonostrophy.—It

is well known that the CHM equation (1) conserves the
energy and the enstrophy which defined in terms of the

wave action nðkÞ ¼ k4jĉ kj2
2�kx

are, respectively,

E ¼
Z

j!kjnkdk (3)

and
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� ¼
Z

kxnkdk: (4)

E and� are exact invariants of the CHMmodel. Under the
conditions of weak nonlinearity and random phases, the
CHM model also conserves an extra invariant, zonostro-
phy,

Z ¼
Z

�knkdk; (5)

where function �k is the density of Z in the k space which
satisfies the triad resonance condition �ðkÞ ¼ �ðk1Þ þ
�ðk2Þ for all wave vectors k, k1, and k2 which lie on the
resonant surface given by the solutions of the wave vector
and frequency resonance conditions, k ¼ k1 þ k2 and
!ðkÞ ¼ !ðk1Þ þ!ðk2Þ. Expressions for �k were first
found in [16,17] in the special cases of nearly zonal turbu-
lence and large-scale turbulence and a general expression
was found for all k’s in [18]. In the short-wave limit
considered here, we have

�k ¼ kx
3

k10
ðkx2 þ 5ky

2Þ: (6)

The integral (5) with the density (6) is an exact invariant of
the kinetic equation [16,17], and thus it is an approximate
invariant of the small-scale CHM equation. Expression (6)
allows us to explicitly see that the invariant’s density is
strictly positive and scale-invariant, meaning that one can
use the generalized Fjørtoft argument of [16,17] to find the
cascade directions of the three invariants.

Dual and triple cascade behavior.—Let us first recall the
classical Fjørtoft argument for 2D NS turbulence [14].
Consider 2D turbulence excited at some forcing scale
�k0 and dissipated at very large (�k� � k0) and at very
small scales (�kþ � k0). The conservative ranges be-
tween the forcing scale and the dissipation scales are called
the inertial ranges. The two conserved quantities in this
case, in the absence of forcing and dissipation, are the
energy E and the enstrophy � which are given by the
same expressions as for the small-scale CHM model, see
(3) and (4). In the presence of forcing and dissipation in
steady-state turbulence, the rate of production of E and �
by forcing must be exactly the same as the dissipation
rates, " and �, respectively. Note that the k space densities
of E and� differ by a factor of k2, and therefore the energy
dissipation rate " is related to the enstrophy dissipation rate
� as �� k20". Now, let us suppose ad absurdum that at

�kþ the energy is dissipated at a rate comparable to the
rate of production at the forcing scales, i.e., �". This
would mean that the enstrophy would be dissipated at the
rate �k2þ", but this amount greatly exceeds the rate of the
enstrophy production ���k20". Thus, we conclude that

most of E must be dissipated at the scales �k�, i.e., that
the energy cascade is inverse (with respect to its direction
in 3D turbulence). Similarly, assuming ad absurdum that
most of � is dissipated at �k� would also lead to a

conclusion that the amount of E dissipated is much greater
than the energy produced. Therefore, the cascade of � is
direct; i.e., it is dissipated at k� kþ � k0.
Note that the quantities that determine the cascade di-

rections are the k-space densities of the invariants or more
precisely, the scaling of the ratios of these densities with k.
In the CHM model, we have three invariants, and the
cascade picture would necessarily be anisotropic (it is
impossible to divide the 2D k space into three noninter-
secting cascade regions in an isotropic way). Let us sup-
pose that turbulence is produced near k0 ¼ ðk0x; k0yÞ, and
it can be dissipated only in regions which are separated in
scales from the forcing scale, i.e., either at short scales,
k � k0, nearly zonal scales, kx � k0x, or at nearly meri-
dional scales ky � k0y, see Fig. 1. Then, each of the

invariants must cascade to the scales where its density is
dominant over the densities of the other two invariants. The
boundaries between the cascading ranges lie on the curves
in the k space where the ratios of the different invariant
densities, taken pairwise, remain constant (equal to the
respective initial values). Note that k2 � kx

2 þ 5ky
2 �

5k2, so we replace (6) with a simpler expression, ~�k �
kx

3=k8.
E=� boundary.—As for the 2D NS turbulence, the

boundary separating the energy and the enstrophy cascades
is defined by

k2 � k20; (7)

(i.e., a circle in the 2D k space, k2x þ k2y ¼ k20). This says

that E must go to larger scales and � must go to smaller
scales.
E=Z boundary.—Equating the ratio of the energy density

j!kj to the zonostropy density kx3=k8 to the initial value of
this ratio, we get for this boundary
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FIG. 1 (color online). Nonintersecting sectors for triple cas-
cade as predicted by the generalized Fjørtoft argument.
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k3=kx � k30=k0x: (8)

This says that the E must go to the zonal scales, ky � kx.

Moreover, this expression (8) also poses a particular re-
striction on the path of the energy to the zonal scales, e.g.,

for ky � kx, it should zonate at least as fast as ky ¼
const k1=3x , see Fig. 1.

�=Z boundary.—Equating the ratio of the enstrophy
density kx to the zonostropy density kx

3=k8 to the initial
value of this ratio, we get for this boundary

k4=kx � k40=k0x: (9)

This relation is also interesting. Because k � kx, the curve

(8) intersects the kx axis at a finite distance, k
�
x � k4=30 =k1=30x .

We see that Z cannot cascade too far to large k unless one
starts with nearly zonal scales, k0y � k0x. In particular, if

k0y ¼ k0x,we have k�x ¼ 21=6k0; i.e., the maximal allowed

wave number for the Z cascade is practically the same as
the initial scale. In other words, in this case, the zonos-
trophy can only cascade to the larger scales.

Numerical study.—A pseudospectral code has been used
to solve the CHM equation. No dissipation is used, and the
initial condition is given by

ĉ kjt¼0 ¼ Ae½ðjk�k0j2=k�2Þþi�k	 þ image; (10)

where k0 ¼ ðk0x; k0yÞ and k� are constants and �k are

random independent phases, and by ‘‘image’’ we mean
the mirror-reflected spectrum with respect to the kx axis.
Since c is a real function, only the semiplane kx � 0 was

used in our computations because of the symmetry ĉ�k ¼
ĉ �

k.
To quantify the cascades of the invariants in the time-

evolving nondissipative turbulence, we introduce their
centroids or ‘‘ centers of mass’’ defined as follows:

k EðtÞ ¼ 1

E

Z
kk2jĉ kj2dk; (11)

k�ðtÞ ¼ 1

�

Z
kk4jĉ kj2dk (12)

and

k ZðtÞ ¼ 1

Z

Z
k
k4x
k6

ðk2x þ 5k2yÞjĉ kj2dk: (13)

We have chosen two sets of parameters corresponding to
weak and strong initial nonlinearities.

Weakly nonlinear case.—The initial spectrum and its
width are k0 ¼ ð20; 20Þ and k� ¼ 8; the initial amplitude
is A ¼ 10�6 with resolution 5122. One can directly esti-
mate the ratio of the linear and the nonlinear terms in
Eqn. (1), leading to an estimate for the degree of nonline-
arity � to be

�� 2
ffiffiffiffiffiffiffi
2�

p
k30k�A
�

; (14)

which gives �� 0:09. Numerically, we observe that all
three invariants are well conserved, namely, the energy is
conserved within 0.01%, the enstrophy within 0.15%, and
the zonostrophy is conserved within 1%. For comparison, a

nonconserved quantity
R jĉ kj2dk changes by over 200%

over the same time interval.
The cascade directions for E, �, and Z are plotted in

Fig. 2 in terms of the paths followed by the respective
centroids. For convenience, we normalize the centroids to
their initial values, kcE0, k

c
�0, and kcZ0 so that the centroid

paths start from the same point. We see that each invariant
cascades well into its predicted sector. Interestingly, the
enstrophy and the zonostrophy paths are well inside their
respective cascade sectors, whereas the energy follows the
boundary of its sector with the zonostrophy sector. One
should remember, however, that the boundaries between
the sectors are not sharp because the Fjørtoft argument
operates with strong inequalities.
Strongly nonlinear case.—In this case, the resolution is

10242, the center of the initial spectrum is k0 ¼ ð40; 40Þ,
and its width is k� ¼ 16, and the initial amplitude is A ¼
10�6. This time �� 0:7 so that the initial turbulence is
moderately strong. While the energy and enstrophy are still
well conserved, within 0.2% and 1.2%, respectively, the
zonostrophy is not conserved initially. It changes 65% over
the first half of the run which is not surprising considering
that the zonostrophy is only expected to be conserved if the
nonlinearity is weak. What is more interesting, however, is
that the zonostrophy growth saturates as time proceeds so
that the zonostrophy is rather well conserved in this case
for large times, within 5% over the second half of the run.
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FIG. 2 (color online). The cascades of energy, enstrophy, and
zonostrophy for the weakly nonlinear case, tracked by their
centroids.
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This suggests that for large times, the scales that support
the zonostrophy invariant become weakly nonlinear, even
though the energy scales probably remain moderately non-
linear, and the enstrophy scales are definitely strongly
nonlinear.

The paths of the centroids are shown in Fig. 3. A picture
similar to the weakly nonlinear case is observed; namely,
the enstrophy and the zonostrophy cascades lie well inside
their respective theoretically predicted sectors, and the
energy cascade follows the boundary of its sector. This
agreement could be explained by the fact that even in this
strongly nonlinear regime, the zonostrophy invariant is
conserved for large times and the triple cascade picture
predicted using this invariant provides a reasonable de-
scription of the turbulence evolution and explanation of
the zonal jet formation.

Summary.—In the present Letter, the generalized
Fjørtoft argument was used to predict a triple cascade
behavior of the CHM turbulence, in which the energy,
the enstrophy, and the zonostrophy are cascading into their
respective nonintersecting sectors in the scale space. These
cascades are anisotropic, and the energy cascade is pre-
dicted to be directed to the zonal scales, which provides a
physical explanation and the character of the formation of
the zonal jets in such systems.

The zonostrophy conservation, as well as the triple
cascade picture, were tested numerically for the cases of

both weak and strong initial nonlinearities. The zonos-
trophy invariant was shown to be well conserved in the
weakly nonlinear case. Moreover, the zonostrophy conser-
vation was also observed for the case with strong initial
nonlinearity after a transient nonconservative time interval.
Presumably, this is because the zonostrophy moves in time
to the scales that are weakly nonlinear even though the
energy and the enstrophy remain in the strongly nonlinear
parts of the Fourier space. Using the energy, the enstrophy
and the zonostrophy centroids for tracking the transfers of
these invariants in the Fourier space, we demonstrated that
all three invariants cascade as prescribed by the triple
cascade Fjørtoft argument in both the weakly nonlinear
and in the strongly nonlinear cases. The energy appears to
be somewhat special among the three invariants in that it
tends to cascade along the edge of the sector allowed by the

Fjørtoft argument, namely, along the curve k / k1=3x .
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FIG. 3 (color online). The cascades of energy, enstrophy, and
zonostrophy for the strongly nonlinear case, tracked by their
centroids.
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