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Flapping Wing Flight Can Save Aerodynamic Power Compared to Steady Flight

Umberto Pesavento and Z. Jane Wang™

Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853, USA
(Received 6 April 2009; published 11 September 2009)

Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is
necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists
that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes
equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerody-
namic power needed to support a specified weight. While most flapping wing motions are more costly
than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of
the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic

advantage.
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Birds and insects have evolved to fly with flapping
wings. Planes are designed to fly with fixed wings. These
different styles of flight result from the complex evolu-
tionary history of animals and machines, and as such can-
not be entirely explained by aerodynamics. Nevertheless,
the coexistence of these strikingly different flight styles
motivates us to ask whether one of them is aerodynami-
cally more advantageous than the other. There are reasons
to argue for different answers. First, noting the complex
flow created by flapping wings [1,2], we could argue that
flapping flight appears to waste energy in churning up the
flow and thus is less efficient. Alternatively, noting that
fixed and flapping wings are employed at different scales,
we could argue that fixed wing flight is more efficient at
larger scales, and flapping flight at smaller scales.

Recent experimental and computational studies have
examined the effects of various parameters on the force
and power production in flapping flight, finding various
local optima [3-7]. Since there is no general method to
determine the global optimal solution, these local optima
of flapping flight are not guaranteed to be efficient. For
example, the much-studied generic translational and pitch-
ing motion with sinusoidal time variations is typically less
efficient than the optimal steady motion of the same wing
(Fig. 1). In practice, we find that most prescribed flapping
motions are less efficient than the optimal steady motion.
This can be understood in the quasisteady limit, in which
the efficiency is determined only by the angle of attack. In
such a regime, a steady wing can operate constantly at the
optimal angle of attack, whereas a flapping wing periodi-
cally deviates from it and therefore is less efficient. The
same general results can be confirmed by analyzing a two-
stroke flapping motion [8]. Without unexpected unsteady
effects, a flapping wing is always less efficient. In this
sense, the optimal fixed wing motion sets a high bar to
measure the cost of the flapping wing motion against.
Therefore, instead of showing that the found solutions
are optimal in the global sense, which is impractical for
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these problems, we show that the new solutions outperform
the previously known best solutions.

The goal of this work is to identify at least one case in
which unsteady aerodynamics makes a flapping motion
less costly than the optimal steady wing motion. We com-
pare the aerodynamic power needed to overcome the fluid
drag and support a given weight using either steady or
flapping motions. This is measured by the dimensionless
quantity P*, defined as
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FIG. 1 (color online). Optimization of fixed wing kinematics
for a wing of elliptical cross section of aspect ratio 1/4 and chord
length 6.8 X 1072 cm. (a) Vertical force F, as a function of the
distance traveled at the optimal angle of attack. In the inset,
vorticity field around the wing at steady state. (b) Specific power
as a function of the angle of attack «. For each a, the velocity is
chosen to support a weight of 0.5 mg at steady state. In the range
of between 20° and 40°, containing the optimal angle of attack,
the flow around the wing is separated, exhibiting dynamic stall
followed by periodic vortex shedding. The minimum specific
power P, = 0.245 occurs at a velocity of 2.94 m/s and an angle
of attack of 27.5°. Each data point is obtained by averaging
several periods after the flow has reached a periodic state. The
numerical convergence of each simulation is checked by com-
paring computations using a 128 X 256 grid and a 256 X 512
grid.
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where F() and U(f) are instantaneous aerodynamic force

and wing translational velocity, respectively. 7(r) and Q1)
are the instantaneous aerodynamic torque and wing angu-
lar velocity, Mg is the weight, and T is the period. P* is

dimensionless, and the reference velocity U, s = 1/% is

constant for a specific wing of area A and weight Mg. We
note that in the case of steady wing motion with a constant
angle of attack, the lift and drag are proportional to U2, and

it follows that P* = CD(a)/Cz/z(a), where C;(a) and
Cp(a) are lift and drag coefficients at an angle of attack
«, respectively.

We fix the shape of the wing and the weight, and seek the
wing motion that minimizes the aerodynamic power sub-
ject to the weight balance constraint. Although it is pos-
sible to compute 3D flows around 3D rigid or flexible
wings [9-11], the computational cost of such simulations
would limit the number of trials allowed in the optimiza-
tion procedure. A 3D simulation on 1283 grid takes about
50 h to simulate 5 periods on a typical desktop computer
[11], which makes optimization task unrealistic. Instead,
by using 2D computations we are able to carry out an
optimization of the unsteady flows around flapping and
fixed wings at Re ~ 100. Specifically we compute the
aerodynamic power of a 2D rigid wing with elliptical cross
section and aspect ratio 1/4 undergoing a prescribed mo-
tion by solving the Navier-Stokes equation [12,13]. The
optimizations described here were performed using a
256 X 512 grid. Qualitatively similar results are obtained
with a 125 X 256 grid. To verify the convergence of these
results, simulations were repeated with a 512 X 1024 grid
for the parameters corresponding to local optima. To
choose meaningful parameters for our calculation, we
base the morphological parameters on those of a fruit fly
(see the caption of Fig. 2).

In order to solve the constrained minimization problem
described above, we use a derivative-free method and take
advantage of a quasisteady model to improve its speed of
convergence. We discretize the phase space representing
the kinematics in all dimensions except for the flapping
frequency (or the velocity, in the case of a stead wing). At
each point in the discretized space, we first solve the force
balance constrained by tuning the frequency of motion. We
start by choosing the frequency of motion which satisfies
the constraint for the quasisteady model in which the
aerodynamic lift is quadratic with respect to the wing
velocity and varies as sin2« with the angle of attack «
[13]. We then calculate a Navier-Stokes solution for the
corresponding wing motion. If the resulting force does not
satisfy the constraint balance, we use the previous Navier-
Stokes solution to obtain a better estimate of the dimen-
sionless constant of the quasisteady model, and we repeat
the procedure until the constraint is satisfied by the Navier-
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FIG. 2 (color online). (a) Optimized flapping motion. The
optimal flapping motion found here uses 27% less power than
the optimal fixed wing kinematics. The aerodynamic power is
calculated after steady state is reached by averaging over four
periods of motion. (b) Sinusoidal motion [4]. Wing chords [gray
(red)] and the aerodynamic force (black) are shown equally
spaced in time. The optimized flapping motion in (a) requires
only 38% of the aerodynamic power used by the sinusoidal
motion in (b) to lift the same weight. We set the amplitude to
be the arclength traveled by the wing of a typical fruit fly at 2/3
of its length, which is about 6 chords, and the profile of the wing
velocity to be almost square (K = 0.9) as previously found by a
quasisteady analysis [5]. A typical fruit fly has a mass m =
1 mg. Its wing has a radius » = 0.2 cm, a mean chord ¢ = 6.8 X
1072 cm, and a typical flapping frequency of 250 Hz [18,19].
Thus, each wing supports a weight of about 0.5 mg flapping at a
Reynolds number of about 100.

Stokes solution with the required accuracy. After the force
balance constraint is eliminated by tuning the frequency of
motion, the optimization is reduced to an unconstrained
problem in the remaining parameters which we solve by
using a simple bisection algorithm in each dimension.

First, we determine the optimum among all steady wing
motions. A steady wing motion is specified by its velocity
U and its angle of attack « [Fig. 1(a)]. Following the
procedure described above, for each a, we determine U
by satisfying the weight balance constraint. We then de-
termine the minimal power in «. In the range of & between
20° and 40°, containing the optimal angle of attack, the
flow around the wing is separated, exhibiting dynamic stall
followed by periodic vortex shedding (Fig. 1). The aero-
dynamic power is calculated by averaging over four peri-
ods of motion after steady state is reached. The minimum
specific power P, = 0.245 occurs at a velocity of 2.94 m/s
and an angle of attack of 27.5°.

Next, we consider flapping wing motions for the same
wing. There are infinite choices of parametrizations for
flapping kinematics. It is desirable to describe the flapping
motion with a small number of parameters without exclud-
ing all of the efficient motions. Following [5], we consider
a family of periodic motions based on observed hovering
insect wing kinematics [Fig. 2(a)]. The stroke angle ¢ () is
given by a smoothed triangular waveform, parametrized by
K, ¢(t) = Sifj?Ksin_l[K sin(27ft)]. The wing pitching
angle 7(¢) is given by a periodic hyperbolic function,

parametrized by C, n(1) = - tanh[C, sinQzfr +
n

®,)] + no. This parametrization has the advantage of
decoupling the relevant aerodynamic features of a flapping
motion into separate parameters: the flapping frequency
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(f), the amplitude (A), the angle of attack at the midstroke
(@ max)s the speed of turning (K), the speed of rotation of the
wing at reversal (C), and the phase between the translation
and rotation of the wing (¢,). The wing velocity and angle
of attack can smoothly vary between sinusoidal and square
profiles with a single parameter.

By optimizing the angle of attack, the speed of turning,
and the phase between reversal and pitching while tuning
the flapping frequency to satisfy the weigh balance con-
straint with the procedure described above, we obtain a
minimum value of the specific power of P, = 0.178 at
(f, amax> @) = (218 Hz, 30°, 77/4) (Figs. 2 and 3). This is
27% more efficient than the optimal steady motion, sig-
nificantly less costly than kinematics previously consid-
ered in the literature. For example, sinusoidal kinematics
[4] use more than twice the power to lift the same weight,
and 70% more compared to the optimal fixed wing motion.
To investigate why the optimal flapping motion presented
here is more efficient than steady and simple sinusoidal
motions, we examine the time dependent aerodynamic
force and power shown in Fig. 3. In particular, we focus
on two segments: the midstroke and near wing reversal. In
contrast with sinusoidal flapping motions where the angle
of attack quickly deviates from its optimal value, the mid-
stroke of the optimal flapping motion has an almost con-
stant angle of attack at about 30°, which is near the optimal
value for this wing (Fig. 1). This suggests that the main
difference between the optimal flapping and the optimal
steady motion lies in the unsteady aerodynamics near wing
reversal.

Immediately after wing reversal, the vertical force of the
optimal flapping motion exhibits a large peak similar to
those previously observed in robotic wing experiments
[14] (Fig. 4). This large force is produced at a specific
power P, = 0.1, much smaller than the specific power
during the midstroke. In order to understand how this large
force is produced efficiently, we manipulate the flow
around the wing in our simulations. In particular, we

remove various vortices from the flow after wing reversal
to quantify their effects on the fluid force. Specifically, we
remove vortices from the wake of the wing by setting the
vorticity field to zero in the corresponding regions and
connect them to the surrounding vorticity field by a linear
interpolation. Since the vortices removed are a few chords
away from the wing, the no-slip boundary condition at the
wing is unaffected. In addition, because we are working
with vorticity field, the incompressibility condition is au-
tomatically satisfied. This new vorticity field is then
evolved in time. We found that the leading edge vortex
generated in the previous stroke has the most significant
effect on the subsequent unsteady aerodynamic force.
Figure 4 shows the vorticity fields produced under two
different conditions: (a) the unperturbed flow after three
periods of motion and (b) the flow at the same time as in (a)
but with the previous leading edge vortex removed just
before the wing reversal, at time ¢/T = 2.78, where T is
one period of motion. The main difference in the fluid flow
between these two cases is best seen in the velocity field
near the wing (Fig. 4). In the unperturbed case (a), after the
wing reverses, the flapping wing moves into an effective
incoming upward flow of about 2 m/s, resulting in a force
of 1.2 mg with an average specific power of 0.1. On the
other hand, in (b) the wing moves into a downward flow
and the force trace in Fig. 4(c) exhibits no peak following
reversal. After about half a period, the force traces in (a)
and (b) converge again to the same values. The average
forces over a period of motion are 0.5 mg and 0.26 mg for
case (a) and (b), respectively, and the corresponding aver-
aged power is 12 uW in both cases. Note that while the
unperturbed case is more efficient than the optimal steady
motion, this is no longer true in the absence of the leading
ledge vortex, which has the specific power of 0.52.
Removing other vortices shed during earlier periods of
motions had a much smaller effect.

To the best of our knowledge, the optimizations pre-
sented here provide the first piece of evidence that, at the
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FIG. 3 (color online).

Fluid force (F, and F,) and vorticity field (w) during one period of optimized wing motion.
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FIG. 4 (color online).
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Wing-wake interaction near wing reversal. (a) Velocity field immediately after wing reversal in the

unperturbed case. (b) Velocity field after the leading edge of the previous stroke has been artificially removed. (c),(d) Vertical force
and power for half a period of motion. The traces in solid (blue) lines and dashed (red) lines correspond to the force and power
generated by the unperturbed flow in (a) and to the modified flow in (b), respectively. The interaction with the leading edge vortex of
the previous stroke increases both the lift and fluid power. However, the net effect is beneficial to the efficiency of lift production, as the
lift in the shaded region increases threefold while the required power only increases by 50%.

scale of insects, a two-dimensional flapping flight can be
aerodynamically more efficient than the optimal fixed wing
flight. This is achieved by taking advantage of the interac-
tion of the wing with its wake near wing reversal. Although
the calculation presented here was carried out in 2D, the
same methodology can be extended to three dimensions.
When future 3D computations are carried out at compa-
rable speed as the current 2D computations, it will be
interesting to examine the results from 3D optimization.

Designing small scale flapping devices is an active area
of current flapping flight research [15—17]. A notable chal-
lenge in designing effective small scale flapping devices is
to obtain flight efficiency comparable to fixed wing flight.
Current research has focused on improving the efficiency
of power source and the design of the wing architecture.
Our study suggests that efficiency can be gained signifi-
cantly by tuning the wing motion.

This work is supported by AFOSR and Packard
Foundations. Part of the computations were carried out at
Cornell’s Center for Advanced Computing Facility.
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