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We study structures of room-temperature ionic liquids at electrified interfaces and the corresponding

electrical double-layer capacities using a self-consistent mean-field theory. Ionic liquids are modeled as

segmented dendrimers and the effective dielectric constant is calculated from the local distribution of ions

to accommodate the excluded volume and the local dielectric screening effects. The resulting camel-

shaped capacitance curve is further analyzed in terms of the thickness of alternating layers and the

polarization of ions at electrified interfaces.
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Room-temperature ionic liquids are typically composed
of bulky cations and anions of unequal size. Recent studies
suggest that ionic liquids form alternating layers at air-
liquid surfaces and at charged interfaces [1]. At a charged
interface the coion and counterion self-order in alternating
layers and the overall thickness of layers depends on the
electrostatic potential of the electrode. The typical size of
each layer is of the order of a molecular length, generating
a large electrostatic potential field. It is intriguing that the
average density or the ‘‘envelope’’ of alternating layers of
ionic liquids bear a strong resemblance to the electrical
double-layer (EDL) structure commonly found in aqueous
electrolytes, i.e., a compact (Stern) layer of counterions
and specifically adsorbed ions, and a diffuse layer further
towards the bulk [2]. Although studies of the EDL in
aqueous electrolyte solutions are numerous, similar studies
in ionic liquids have only recently been undertaken [1].
Some modelling studies of the interfacial structure of ionic
liquids have been carried out at a molecular level by im-
plementing molecular dynamics simulations [3,4]. Recent
analytical predictions on the EDL structure based on mean-
field approximations have been developed by solving the
Poisson-Fermi equation with or without applying com-
pressibility constraint on ions [5,6]. However, despite these
advances, our understanding of the structure of ionic
liquids at electrified interfaces is far from complete.
Among the most exciting experimental result that needs
further studies is the differential capacitance curve of an
ionic liquid system which reaches a maximum around the
point of zero charge (PZC)—the opposite behavior to that
seen in an aqueous electrolyte solution [7]. Here, we study
the EDL capacitance in ionic liquids based on a detailed
molecular model of ionic liquids and a novel use of local
(effective) dielectric constant of ionic liquids in our model
system.

In general, the EDL capacitance reflects the extent to
which the electrostatic potential at the interface is screened
by the ions that accumulate there. A better screening is

reflected by a higher capacitance value. This parameter
provides valuable information about the thickness of the
EDL and the composition and polarization of ions at the
interface. However, explaining the shape of the differential
capacitance curve in ionic liquids is difficult for many
reasons, not the least of which is the need to determine
the behavior of multiple ionic layers, which are in total no
more than a few nanometers thick. For example, to fit
experimental results from reflectometry measurements
correctly, one needs good a priori assumptions about the
orientation and coordination of ionic liquids at the thin
interface. The best results are provided when these as-
sumptions are based on a first-principles molecular model.
Consequently, we used a numerical self-consistent mean-
field theory (SCMFT) to model the structure of room-
temperature ionic liquids at electrified interfaces and to
predict qualitatively the corresponding electrical properties
such as the EDL capacitance.
The SCMFT is a powerful first-principles molecular

modelling technique for studying physical and thermody-
namic properties of systems at equilibrium [8]. An essen-
tial component of the SCMFT methodology is a self-
consistent iterative procedure for minimizing the free en-
ergy of the system. In principle, the SCMFT model goes
beyond the Gouy-Chapman approach for several reasons:
(i) all ions have volume and thus they experience nonideal
interactions, which SCMFT is able to approximate,
(ii) ions typically have internal conformational degrees of
freedom (similar to surfactants and polymers) which can
be accounted for efficiently using a Markov approximation
in SCMFT, (iii) when the local dielectric constant is a
function of the molecular distribution (as in ionic liquids),
it is necessary to account for the polarizability of the
molecules, (iv) one can choose the suitable compressibility
relationship for the system using SCMFT. While not nec-
essary, it is usual to choose the system to be incompress-
ible. For ionic liquids, this choice is important because a
dense packing of ions is an essential ingredient. The suc-
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cess of a molecularly realistic SCMFT model for ionic
liquids strongly depends on how accurate the size and
shape, the flexibility, and the various chemical moieties
are modeled. This means detailed molecular structures
such as chain branching should be accounted for. The
SCMFTmodel provides a direct comparison to experimen-
tal systems and enables us to link the structure of ionic
liquids at the electrified interface to the corresponding
EDL capacitance. The system of interest is thus composed
of ionic liquids adjacent to a charged solid surface. A
periodic boundary condition is applied to the two sides
perpendicular to the surface, whereas a Neumann boundary
condition is used on the side opposite to the surface to
reflect bulk properties. In SCMFT, one can deconvolute the
electrostatic and steric contributions in the free energy
formulation. The total free energy F per unit volume V
of the system reads,
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where the first to the third terms are the mixing entropy; the
fourth term is the mixing enthalpy based on the Flory-
Huggins formulation [9]; the fifth term comes from the
local mean-field interactions; the sixth one is an extra
contribution due to an incompressibility constraint; and
the seventh term is the electrostatic (Coulombic)
contribution.

Since ionic liquids are composed of bulky ions, each ion
here is modeled as a chain of segments of a particular
order. The connectivity of every segment in each chain is
accounted for using a freely jointed chain model and the
statistical weights of all possible conformations are found
using the Edwards diffusion equation [10]. In addition to
the freely jointed chain, a small amount of monomeric void
(10�4 of the total fraction) is introduced as a volume-filling
segment to accommodate densely packed ionic liquids. We
refer the readers to Refs. [8] for further details. The indices
þ,�, and v in Eq. (1) represent the cation and the anion of
ionic liquids, and the uncharged monomeric void, respec-
tively; fþ, f�, and fv are the total (volume) fraction of
cation, anion, and void; Nþ and N� are the lengths of the
cation and the anion; Qþ and Q� are the partition function
of the cation and the anion; the indices i and j refer to the
segment types; wiðrÞ is the potential of mean force of
segment i at point r; ’iðrÞ is the corresponding volume
fraction of segment i; �ðrÞ is the Lagrange multiplier at r;
�i is the valence of segment i; c ðrÞ is the electrostatic
potential at r; �ij is the interaction parameter between

segment i and segment j. To minimize the free energy,
the first order derivation of the free energy F with respect
to the order parameters wiðrÞ and ’iðrÞ are set equal to
zero, subject to the incompressibility constraint

P
i’iðrÞ ¼

1 at all r. The local electrostatic potential c ðrÞ is obtained
by solving the Poisson equation, i.e., �0r½�rðrÞrc ðrÞ� ¼
�P

ie�i’iðrÞ, where the local dielectric constant �rðrÞ ¼P
i�r;i’iðrÞ, and �r;i is the relative dielectric constant of

segment i. After a certain number of iterations, the free
energy converges to an optimum value when the mean-
field potential and the volume fraction of ions are self-
consistent.
We performed a series of calculations to study the

structure of pure ionic liquids at charged interfaces with
the following modelling details. The cation and the anion
are modeled as dendrimers with four branches (Fig. 1). We
consider they are generic representation of ionic liquids
with similar size orders and well-hidden charged groups,
such as phosphonium cation and BF�

4 or PF�
6 anion. The

void is modeled as an uncharged monomer. For simplicity,
we consider the variation of the volume fraction of ions
only in the direction perpendicular to the surface. This
approximation implies that the volume fraction of ions is
homogeneous throughout each plane parallel to the sur-
face. We chose the size of a segment to be 3 Å; the size of
the system was chosen such that the bulk properties are
reached within the boundaries of the modeled system;
�r;A ¼ �r;B ¼ 10, �r;P ¼ �r;N ¼ 30, �r;v ¼ 1, and �r;S ¼
10 (S refers to the surface); �AB ¼ 1 represents an ade-
quate repulsion between uncharged segment A of cation
and B of anion. The choice of the dielectric constants is as
such that the (static) dielectric constant of the ionic liquid
in the bulk is realistic (of the order of 11) [11].
The surface charge �0 and the total differential capaci-

tance C are plotted as functions of the surface potential c 0

in Fig. 2. The capacitance C is calculated from the first

derivative of �0 with respect to c 0, i.e., C ¼ @�0

@c 0
[12]. The

bell-shaped capacitance curve obtained from a uniform
dielectric constant of segments, i.e., �r;A ¼ �r;P ¼ �r;B ¼
�r;N ¼ 11, is displayed here for comparisons. The �0ðc 0Þ

FIG. 1. Schematic of the dendrimeric structure of cation (left
panel) and anion (right right) used in the model. The cation is
composed of a positively charged segment P and four neutral
segments A per branch, whereas the anion consists of a nega-
tively charged segment N and four neutral segments B per
branch.
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relationship, when the effective dielectric constant is taken
into account (black curve), basically consists of two re-
gimes: a quasilinear regime at low electrostatic potentials
and a nonlinear regime at high potentials [13]. In the
quasilinear regime, the electrode’s surface is still not yet
fully saturated by counterions, whereas the counterions
saturate the electrode’s surface and accumulate further
away from the surface in the nonlinear regime [cf.
Fig. 3(a)]. In both regimes, the surface charge is over-
compensated or overscreened by the counterions in a simi-
lar mechanism to one described in Ref. [4]. Moreover, the
capacitance is symmetric with the minimum value at PZC
and maxima at c 0 � �0:8V. This camel-shaped capaci-
tance curve is not unique to ionic liquids. It was first
observed decades ago in the study of aqueous solutions
of NaI, NaF,KPF6, andKBF4 at Au or Ag electrodes where
a specific (nonelectrostatic) adsorption occurs [14].
Arguably, the primary cause for such a capacitance curve
in ionic liquids may be different, as highlighted by
Kornyshev in his recent theoretical paper [5]. He con-
cluded that camel-shaped capacitance curves can be ob-
tained when ions are considered to have finite sizes
(beyond the Poisson-Boltzmann model which assumes

they are point charges). We confirm this point here using
the SCMFT, in which the excluded volume effect is in-
corporated by modelling ions as segmented dendrimers
with a sufficient repulsion between uncharged segments
A and B in the branches of each cation and anion. However,
we found that the excluded volume effect is not the only
cause. By considering the effective dielectric constant of
ionic liquids as a function of the local segment density, we
found that the polarizability of ions at the interface is
another key factor that contributes to the camel-shaped
capacitance curve. In the supporting information [15], we
show that the Kornyshev’s analytical approach actually
allows some local fluctuations of the dielectric screening.
The camel-shaped capacitance curve can be further

analyzed from the perspective of the potential dependence
of the structure of ionic liquids at the interface. This
structure-property relationship is elaborated as follows:
(1) Within the quasilinear regime of �0ðc 0Þ, the capaci-
tance increases with the surface potential and the maxima
of the capacitance curve can be used to define the bounda-
ries of this regime (�0:8V & c 0 & 0:8V as shown in
Fig. 2). A more compressed (thinner) EDL leads to higher
capacitance values. For qualitative analyses, we show al-
ternating layers with the corresponding profile of potential
field and dielectric constant at four different surface po-
tentials in Fig. 3. Following the trend of these profiles, one
can conclude that at the points where the capacitance
reaches its maximum values (c 0 � �0:8V, 0:8V), the
electrode’s surface is saturated with counterions. In be-
tween these two points, some coions can still be found at
the surface. At large applied potentials [c 0 & �0:5V in
Fig. 3(c)], the charged segment of the counterions is pri-
marily located at the electrode’s surface, causing a higher
dielectric constant value there. One can assume the alter-
nating layers of positive and negative charges as a series of
capacitors where the corresponding capacitance C is ob-
tained from 1=C ¼ P

l1=Cl, where Cl is the capacitance of
layer l. Based on this representative formula, the capaci-
tance of the EDL in ionic liquids is determined by a non-
trivial balance between the thinning (thickening) of each
layer and the decreasing (increasing) polarization. A
higher capacitance value can be a result of thinner layers
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FIG. 3 (color online). (a) Profile of the volume fraction of cation and anion at the interface with different surface potential values.
Beyond the quasilinear regime (c 0 & �0:8V) the electrode surface is saturated with counterions. (b) The corresponding profile of the
diffuse electrostatic potential. (c) The corresponding profile of local dielectric constant �r.
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FIG. 2 (color online). Full line: plot of the surface charge �0 as
a function of the surface potential c 0 for a pure ionic liquid
system. Dashed line: plot of the corresponding capacitance curve
C. The black and the blue curves are results with and without an
effective dielectric constant, respectively. The quasilinear regime
of �0ðc 0Þ is in the region of�0:8V & c 0 & 0:8V, within which
the capacitance curve (black) has a camel-like shape.
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and/or a larger interfacial polarization. Based on our mod-
elling results, the thickness of the layers throughout the
quasilinear regime is relatively the same and the alternat-
ing layers have a similar periodicity, whereas the local
dielectric constants �r differ following the local distribu-
tion of molecular segments. Therefore, an increasing ca-
pacitance in the quasilinear regime must be caused by an
increasing polarization of ionic liquids at the interface, as
illustrated in Fig. 3 for the case of c 0 ¼ �0:3V and
�0:5V. (2) Within the nonlinear regime, the surface charge
is less than a linear function of the surface potential. As
shown in Fig. 2, the nonlinear regime is located at c 0 &
�0:8V and c 0 * 0:8V. In this regime, the interface is
already saturated with counterions such that the EDL
thickness grows with an increasing surface potential
(cf. Fig. 3, c 0 ¼ �1V, �3V). The physical interpretation
of this trend lies in the fact that the energy needed to bring
one counterion from the bulk to the surface increases more
than linearly with an increasing surface charge. A thicker
EDL overcomes the effect of an increasing polarization at
the interface to lower the capacitance (cf. Fig. 3, c 0 ¼
�1V, �3V). The scaling of the capacitance in the non-
linear regime is C / jc 0j�0:8. As a comparison, the scaling
for the bell-shaped capacitance curve is C / jc 0j�0:6,
which indicates that the effective dielectric constant plays
an important role in determining the scale of the capaci-
tance at the electrostatic potential ‘‘wings.’’ Furthermore,
both capacitance curves decay more rapidly than the ana-
lytical prediction of Kornyshev (C / jc 0j�0:5) [5]. The
difference in the scaling factors can be preliminarily at-
tributed to the different modelling details, as highlighted in
the supporting information [15].

An increasingly charged electrode in an aqueous elec-
trolyte solution leads to a more effective screening of the
electrostatic potential. The screening effect intensifies as
the interface is more densely populated by counterions that
replace electroneutral water molecules. As a result, the
curvature of �0ðc 0Þ goes beyond linear in an aqueous
electrolyte solution. At a first glance, the overall capaci-
tance curve of the EDL in aqueous electrolytes seems to
differ from that in ionic liquids. The capacitance curve in
aqueous electrolytes usually reaches a minimum at PZC
and increases monotonically with surface potential,
whereas the capacitance curve in ionic liquids has a
camel-like shape. Nevertheless, under similar premises
both curves would have the same camel-like shape if
similar potential limits could be attained. The maxima
for the capacitance curve in aqueous electrolyte are pre-
dicted to occur at potentials beyond the electrochemical
window of water, such that we never observed this camel-
shaped capacitance curve in reality. To summarize, we
model the structure of ionic liquids at electrified interfaces
by implementing a molecularly realistic SCMFT model of
ionic liquids. The model produces the alternating density
profile of ionic liquids and is used to deduce measurable
capacitance curves that have all the known camel-shaped

features, which are the results of an interplay between the
excluded volume effect and the effective dielectric
constant.
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