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We theoretically analyze the influence of magnetic field on small-signal absorption and gain in a

superlattice. We predict a very large and tunable THz gain due to nonlinear cyclotron oscillations in

crossed electric and magnetic fields. In contrast to Bloch gain, here the superlattice is in an electrically

stable state. We also find that THz Bloch gain can be significantly enhanced with a perpendicular magnetic

field. If the magnetic field is tilted with respect to the superlattice axis, the usually unstable Bloch gain

profile becomes stable in the vicinity of Stark-cyclotron resonances.
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A semiconductor superlattice (SL) is a model system for
a wealth of fundamental phenomena resulting from the
wave-nature of charge carriers [1–3]. Interesting examples
of such phenomena are Bloch oscillations in dc biased SLs
[4], Shapiro-like steps [5] and parametric resonance [6] in
time-dependent electric fields, coherent Hall effect in
crossed electric and magnetic fields [7] and Stark-
cyclotron resonances in tilted magnetic field [8]. The semi-
classical theory predicts that electrons performing Bloch
oscillations in the presence of weak dissipation can poten-
tially provide THz Bloch gain [9]. The Bloch gain profile,
which is shaped as a familiar dispersion curve, is not
limited to SLs. It was recently predicted [10] and observed
[11] in intersubband transitions of quantum cascade lasers,
but dispersive gain profiles have been also found in the
microwave responses of Josephson junctions [12] and
Thim amplifiers [13]. Here we consider the Bloch gain in
its traditional meaning as an effect occurring due to Bloch
oscillations in a single energy band. In SLs, the realization
of the Bloch oscillator is a long-standing problem due to
the instability of a homogeneous electric field in conditions
of negative differential conductivity (NDC) [14]. This
electric instability results in a formation of electric do-
mains in long SLs, which are destructive for the THz gain.

A considerable amount of theoretical and experimental
activities have been devoted to the investigations of tran-
sient oscillations and voltage-current (VI) characteristics
in the presence of magnetic field [2,7,8,15–18], but the
response to a time-dependent field is mostly unexplored. In
this Letter, we focus on the influence of the magnetic field
on the small-signal absorption and gain. We find that
absorption and gain profiles in crossed electric and mag-
netic fields have different characteristic shapes in the
Bloch-like and cyclotronlike regimes of ballistic motion.
We predict a very large and tunable THz gain due to
nonlinear cyclotron oscillations in a single energy band.
The cyclotron gain takes place in conditions of positive
differential conductivity (PDC) and therefore it is stable

against space-charge fluctuations. We also demonstrate
that Bloch gain can be significantly enhanced by the per-
pendicular magnetic field. Moreover, the usually unstable
Bloch gain profile becomes stable in the vicinity of Stark-
cyclotron resonances if the magnetic field is tilted with
respect to the SL axis.
We consider a SL under an action of a static magnetic

field B in arbitrary direction and an electric field EðtÞ ¼
Edc þ E! cos!t in a SL direction, which is chosen to be
the x direction. Here E! cos!t is a weak probe field with a
frequency ! fixed by an external circuit (external cavity).
We consider the electron transport in a single miniband
with the standard tight-binding dispersion relation

"ðkÞ ¼ �ð�=2Þ coskxdþ @
2ðk2y þ k2zÞ=2m; (1)

where "ðkÞ is the electron energy, k is its quasimomentum,
� is the miniband width, d is the SL period, and m is the
effective mass in y and z directions. We use the semiclas-
sical approach based on the Boltzmann equation in the
relaxation time � approximation
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where viðkiÞ ¼ @
�1@"ðkÞ=@ki (i ¼ x, y, z) are the velocity

components and feqðkÞ is the Fermi distribution [2,3]. By

solving Eq. (2), we find the stationary time-dependent
current after transient
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where the prefactor takes into account the density of states
[3], kx is integrated over the Brillouin zone and the inte-
gration limits for ky and kz are �1. Here kt

s is a ballistic

trajectory governed by the equations
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¼ 1
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sÞ � B�; ks
s ¼ k: (4)
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The second equation in (4) means that the quasimomentum
at t ¼ s is k. We derived the solution of the Boltzmann
equation (3) by using both a generalization of the technique
based on the time-evolution operator [18] and the method
of characteristics [19]. The approach based on this solution
is most powerful in the limits of low carrier density N and
low temperature. In this case

feq � 4N�3�ðkÞ (5)

and the current (3) is determined by the ballistic trajecto-
ries starting at k ¼ 0.

The time-dependent current (3) can be used to calculate
the real part of the dynamical conductivity �rð!Þ �
Re½�ð!Þ�, which determines the gain (�r < 0) and absorp-
tion (�r > 0). In the absence of magnetic field �r is
defined by the Tucker formula [3,20]

�rð!Þ ¼ jdcðeEdcdþ @!Þ � jdcðeEdcd� @!Þ
2@!

ed; (6)

where jdcðeEdcdÞ is the Esaki-Tsu characteristic [1],

jdcðeEdcdÞ ¼ jp
2eEdcd�=@

1þ ðeEdcd�=@Þ2
; (7)

and jp is the peak current corresponding to the critical field

Ecr ¼ @=ed�. The Drude conductivity of the SL is �0 ¼
2jp=Ecr. If Edc > Ecr, Eq. (6) describes the dispersive

Bloch gain profile [blue line in Fig. 3(b)] with a crossover
from gain to loss at the resonance ! � !B, where !B ¼
eEdcd=@ is the Bloch frequency. As directly follows from
Eqs. (6) and (7), the upper limit for this Bloch gain is
min½�rð!Þ� ¼ ��0=8.

We now turn to the consideration of electron dynamics
in crossed electric and magnetic fields B ¼ ð0; 0; BzÞ. The
ballistic electron dynamics under static fields is determined
by the pendulum equation, which follows from Eq. (4)
[2,15]. If the electrons start at the bottom of the miniband,
the frequency of their nonlinear oscillations is

� ¼
�
�!c=2Kð!B=2!cÞ; !B < 2!c

�!B=2Kð2!c=!BÞ; !B > 2!c;
(8)

where !c ¼ eBz=
ffiffiffiffiffiffiffiffiffiffi
mxm

p
and mx ¼ 2@2=�d2 are the cy-

clotron frequency and the effective mass at the bottom of
the miniband, respectively. Here KðkÞ is the complete
elliptic integral of the first kind as a function of elliptic
modulus. There exist two distinct regimes of motion: cy-
clotronlike oscillations for the large magnetic field !B <
2!c (oscillations of pendulum) and Bloch-like oscillations
for the dominating electric field !B > 2!c (rotations of
pendulum). As can be seen from Fig. 1(a), the frequency�
is tunable by variation of the magnetic and electric fields. If
!B � !c, we get from Eq. (8) that � ¼ !B. In the
opposite limit !B 	 !c we have � ¼ !c. Close to the
separatrix !B ¼ 2!c oscillations are strongly nonlinear
and anharmonic. All harmonics of � are present in the
Bloch-like regime whereas only odd harmonics exist in the

cyclotronlike regime. Such kind of transient oscillations
have been directly observed in the experiments [7].
In the presence of scattering these oscillations determine

the dc current density at low temperatures, as can be
directly seen from Eqs. (3)–(5) [15]. The resulting VI
characteristics for different values of the magnetic field
are shown in Fig. 1(b). The transition from oscillatory to
rotational motion at the separatrix !B ¼ 2!c manifests
itself as a very abrupt and strong suppression of the dc
current [15–17]. In the cyclotronlike regime, there are no
Bragg reflections and therefore it corresponds the PDC part
of the VI characteristic. On the other hand, the Bragg
reflections in the Bloch-like regime result in NDC at the
operation point. We find that the response of the miniband
electrons to a weak ac field also shows clear signatures of
the different types of ballistic motion. Figures 1(c)–1(f)
show the absorption and gain profiles, calculated using
Eqs. (3)–(5), for different values of !c and !B. The field
strengths are chosen in such a way that the electrons
perform several cycles of oscillations between the scatter-
ing events �� > 1. We see that the gain and absorption
profiles in the different regimes of oscillations have their
own characteristic shapes. If !c � !B, electrons are re-
stricted to the bottom of the miniband, and we obtain a

FIG. 1 (color online). (a) Frequency of the nonlinear oscilla-
tions� [Eq. (8)] as a function of!B for!c� ¼: 2, 4. The dashed
lines separate the cyclotronlike and Bloch-like regimes of mo-
tion. (b) VI characteristics for !c� ¼: 0, 2, 4. (c)–(f) Absorption
and gain profiles for !c� ¼ 4 and different values of electric
field !B� ¼: 0 (c), 6 (d), 7.5 (e) and 8.5 (f).
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familiar Lorentzian absorption profile of a harmonic oscil-
lator, which is centered at ! � � [Fig. 1(c)]. In this case
�r is always positive and an amplification of probe field is
not possible. By increasing the electric field Edc we obtain
a completely different situation, where high-frequency
gain can appear due to nonlinear cyclotron oscillations
[Fig. 1(d) and 1(e)]. The characteristic shape of the gain
profile turns out to be an inverse of the usual dispersive
Bloch gain profile [cf. Figs. 1(d) and 2(b)]. In this gain
profile the frequency of the nonlinear cyclotron oscillations
� determines the position of a resonant crossover from
loss to gain. When we are approaching the separatrix!B ¼
2!c, we see that replicas of this inverted dispersive gain
profile appear at odd harmonics of � corresponding to the
anharmonicity of the ballistic oscillations [Fig. 1(e)]. With
a further increase of Edc we reach the Bloch-like regime
!B > 2!c. Here we always have a dispersive Bloch gain
profile with a crossover frequency � [Fig. 1(f)]. Replicas
of this gain profile can now appear at all harmonics of �.

Our results show that both the cyclotron gain and the
Bloch-like gain have attractive properties such as tunability
and extremely large magnitudes of the gain, which can be
utilized in an operation of THz oscillators and amplifiers.
The gain profiles in both regimes of motion are tunable by
changing magnetic and electric fields. In the Bloch-like
regime, the gain profile can be controlled more easily with
a variation of the electric field, because� depends strongly
on !B [see Fig. 1(a)]. In this regime � is sensitive to the
magnetic field only near the separatrix. On the other hand,
since the cyclotron gain exists only near the separatrix, it is
tunable by simultaneous variation of the electric and mag-
netic fields as shown in Fig. 2(a). We see that large cyclo-
tron gain can be obtained at frequencies !� 
 1 if the
cyclotron frequency is somewhat larger than the scattering
rate !c� 
 2 [Fig. 2(a)]. In typical SLs � � 200 fs so that
!� ¼ 1 corresponds to the frequency !=2� ¼ 0:8 THz.
Therefore the cyclotron gain, similarly as the Bloch gain, is
ideal for amplifiers and oscillators operating at THz
frequencies.

We turn to the important issues of the magnitudes and
the origin of the high-frequency gain. Figure 2(b) shows
the Bloch gain profiles for fixed !B and different values of
!c. We see that by increasing the magnetic field the gain

increases roughly by an order of magnitude in comparison
with the usual Bloch gain at B ¼ 0. Similarly, the THz
cyclotron gain near the separatrix [Fig. 1(e)] is also an
order of magnitude larger than the usual Bloch gain. For
typical SL parameters d ¼ 6 nm, � ¼ 60 meV, and m ¼
0:067me, we obtain that!c� ¼ 1 and!B� ¼ 1 correspond
to the magnetic field B ¼ 2 T and the electric field Edc ¼
5:5 kV=cm, respectively. Thus, already rather weak elec-
tric and magnetic fields can provide strong THz gain
[Fig. 2(a)]. The magnitude of the gain � in units cm�1 is
related to the dynamical conductivity as � ¼ �0ð�r=�0Þ,
where at low temperatures �0 ¼ Ne2�=c

ffiffiffi
�

p
�0mx. For

moderate doping N ¼ 1016 cm�3 and relative permittivity
" ¼ 13 (GaAs), we obtain �0 � 833:5 cm�1. Using this
value of �0, it is easy to estimate all magnitudes of the gain
in Figs. 1 and 2. In the vicinity of the separatrix, THz gain
can have unprecedented values � � 500 cm�1.
Although the response to the ac field results from quite

complicated nonlinear electron dynamics, we can identify
an important role of the separatrix in the origin of this large
THz gain. In the Bloch-like regime electrons periodically
visit the upper part of the miniband and undergo Bragg
reflections at the boundary of the Brillouin zone. In con-
trast there are no Bragg reflections in the cyclotronlike
regime. However, a strong enough electric field Edc peri-
odically brings the carriers to the upper part of the mini-
band where their effective masses are negative [1,9]. We
attribute the cyclotron gain to these nonclassical cyclotron
oscillations in the presence of weak dissipation (scatter-
ing). As the electrons performing Bloch-like and cyclo-
tronlike oscillations are spending more time in the upper
part of the miniband the gain profiles become more pro-
nounced. In the vicinity of the separatrix, the electron
trajectories stick near the Brillouin zone boundary for a
long time (the hyperbolic point of the pendulum) resulting
in a significant enhancement of the THz gain [Figs. 1(e)
and 2(b)].
Since in the cyclotronlike regime the SL operates in

conditions of PDC, it is inherently stable with respect to
the space-charge fluctuations. In the gain profiles this can
be seen as positive dynamical conductivity at low frequen-
cies [Figs. 1(c)–1(e) and 2(a)]. On the other hand, in the
Bloch-like regime the gain always extends to the low
frequencies [Figs. 1(f) and 2(b)] due to the operation in
the NDC state [Fig. 1(b)]. This means that in the Bloch-like
regime the problem of electric instability exists similarly as
in the case of usual Bloch gain in SLs. Several different
approaches have been suggested in order to stabilize the
Bloch gain, including super-superlattice structures [21],
quasistatic modulation of the bias [22] and 2D shunted
surface SLs [17]. Here we demonstrate that the electric
instability can be circumvented by introducing an addi-
tional magnetic field component in the SL direction, so that
the magnetic field becomes tilted with respect to the SL
axis B ¼ ðBx; 0; BzÞ. In this case, electrons perform cyclo-

FIG. 2 (color online). (a) Cyclotron gain profiles for !B� ¼
3:6, !c� ¼ 2 and !B� ¼ 8:5, !c� ¼ 5. (b) Bloch gain profiles
for!B� ¼ 8 and different values of the magnetic field!c� ¼: 0,
2.5, 3.5. The gain profiles were calculated using Eqs. (3)–(5).
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tron oscillations in the plane perpendicular to the SL axis
with the frequency !c? ¼ eBx=m. These in-plane cyclo-
tron oscillations are coupled to the Bloch oscillations via
the perpendicular magnetic field component !c. If !B and
!c? are commensurate (Stark-cyclotron resonance), the
coupling results in delocalization of the electrons, which
reveals itself as additional resonant structures in the VI
characteristics [8]. Figure 3(a) demonstrates such addi-
tional structure for a particular magnetic field. The en-
hancement of the current at the Stark-cyclotron
resonance !B ¼ !c? resembles [23] the resonant struc-
tures in a VI characteristic induced by an auxiliary THz
field [5]. By choosing the working point at the PDC part of
the peak, we find, using Eqs. (3)–(5), that the gain profile
close to the Bloch frequency ! � !B has the usual shape
of the dispersive Bloch gain, whereas the dynamical con-
ductivity at low frequencies is now positive [Fig. 3(b)].
Interestingly, this stable gain profile can be well approxi-
mated by a variant of the Tucker formula (6), in which
jdcðeEdcdÞ is now the current density calculated in the
presence of the magnetic field. We should distinguish our
results from the recent proposal of sub-THz generation in
SLs in tilted magnetic field [24]. There the moving charge
domains are responsible for the current oscillations,
whereas in our case the THz gain occurs in the absence
of electric domains.

In summary, we found that the magnetic field signifi-
cantly alters the shapes of gain profiles and the magnitude
of THz gain in SLs. We described a novel type of large and
tunable THz gain caused by nonlinear cyclotron oscilla-
tions in the crossed electric and magnetic fields. Since the
operation point can be chosen at the PDC part of the VI
characteristic the old problem of space-charge instability,
which is typical for the Bloch gain in the SL, does not exist
here. We also predicted an enhancement of the Bloch gain
due to the nonlinear character of Bloch oscillations in the
presence of a perpendicular magnetic field. Finally, we
demonstrated that in the tilted magnetic field configuration
the usual Bloch gain can be realized in conditions of PDC.

We conclude with two remarks. First, by numerically
solving the Boltzmann equation (2), we observed that the
cyclotron gain decreases rapidly with increasing tempera-
ture. It is typically smaller than the Bloch gain [3,10]
already at 100 K. The stable THz gain in a tilted magnetic
field, by contrast, declines slowly and has similar magni-
tudes as the usual Bloch gain also at room temperature.
Secondly, the large-signal response near the separatrix can
be quite different from the case of linear response. In the
absence of scattering, the electron dynamics can even
become chaotic. Nevertheless, we found that the cyclotron
gain in conditions of PDC can still exist also for reasonably
large amplitudes of the probe field E! > 2Ecr.
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FIG. 3 (color online). (a) VI characteristic in tilted magnetic
field, calculated using Eqs. (3)–(5), for !c� ¼ 2 and !c?� ¼ 5
(black line). The thin blue line shows the Esaki-Tsu VI charac-
teristic [Eq. (7)]. (b) Gain profile for the same magnetic field and
dc bias !B� ¼ 4:75 (black line). The thin blue line indicates the
usual Bloch gain at B ¼ 0 [Eqs. (6) and (7)].

PRL 103, 117401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 SEPTEMBER 2009

117401-4


