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We present a direct comparison of the recently proposed valence bond entanglement entropy and the

von Neumann entanglement entropy on spin-1=2 Heisenberg systems using quantum Monte Carlo and

density-matrix renormalization group simulations. For one-dimensional chains we show that the valence

bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound

on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the

von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement

entropy has a multiplicative logarithmic correction.
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Introduction.—Entanglement has arisen as a new para-
digm for the study of correlations in condensed matter
systems. Measurements of entanglement between subre-
gions, chiefly using entropic quantities, have an advantage
over traditional two-point correlation functions in that they
encode the total amount of information shared between the
subregions without the possibility of missing ‘‘hidden’’
correlations [1], such as may occur in some exotic quantum
ground states. For example, spin liquid states, where two-
point correlation functions decay at large length scales, can
exhibit topological order that is quantified by a ‘‘topologi-
cal entanglement entropy’’ [2]. This and other entropic
measures are typically discussed in the context of the
von Neumann entanglement entropy (SvN), which, for a
system partitioned into two regions A and B, quantifies the
entanglement between A and B as

SvNA ¼ �Tr½�A ln�A�: (1)

Here, the reduced density matrix �A ¼ TrBjc ihc j is ob-
tained by tracing out the degrees of freedom of B.

The properties of SvN are well studied in quantum infor-
mation theory. In interacting one-dimensional (1D) quan-
tum systems, exact analytical results are known from
conformal field theories (CFT); they show that, away
from special critical points, SvNA scales as the size of the

boundary between A and B. This so-called area law [3] is
also believed to hold in many ground states of two-
dimensional (2D) interacting quantum systems, although
exact results are scarce [4]. This has consequences in the
rapidly advancing field of computational quantum many-
body theory, where it is known, for example, that ground
states of 1D Hamiltonians satisfying an area law can be
accurately represented by matrix product states [5].
Tensor-network states and multiscale entanglement renor-
malization ansatz give two promising new classes of nu-
merical algorithms [6] that may allow simulations of 2D
quantum systems not amenable to quantum Monte Carlo
(QMC) simulations due to the notorious sign problem.

However, these simulation frameworks are constructed to
obey an area law; in order to be represented faithfully by
them, a given 2D quantum ground state must have entan-
glement properties also obeying the area law [4].
Unfortunately, entanglement is difficult to measure in

2D, due to the fact that the QMC algorithm does not have
direct access to the ground state wave function jc i re-
quired in Eq. (1). In response to this, several authors [7,8]
have introduced the concept of valence bond entanglement
entropy (SVB), defined for a spin system as

SVBA ¼ lnð2ÞN A; (2)

whereN A is the number of singlets ðj"#i � j#"iÞ= ffiffiffi
2

p
cross-

ing the boundary between regions A and B. Unlike SvN,
SVB can be accessed easily in the valence bond basis
projector QMC method recently proposed by Sandvik
[9]. As demonstrated in Refs. [7,8], SVB has many proper-
ties in common with SvN, in particular, the relationship
SVBA ¼ SVBB , and the fact that SVBA ¼ 0 for regions ‘‘unen-
tangled’’ by valence bonds. A comparison of the scaling of
SVB for (critical) 1D spin-1=2 Heisenberg chains shows
good agreement with analytical results known from CFT;
however, in the 2D isotropic Heisenberg model it displays
a multiplicative logarithmic correction to the area law
[7,8]. If true also for SvN, this would have negative con-
sequences for the simulation of the Néel ground state using
tensor-network simulations.
In this Letter, we compare SVB calculated by valence

bond QMC simulations to SvN accessible through density-
matrix renormalization group (DMRG) simulations of the
Heisenberg model on N-leg ladders. For N ¼ 1, the CFT
central charge calculated by scaling SvN shows excellent
agreement to c ¼ 1, whereas SVB converges to c < 1. For
N > 1, SVB is systematically greater than SvN, a trend
which grows rapidly with N. An examination of entangle-
ment defined by bipartitioning multileg ladders shows a
logarithmic correction for the valence bond entanglement
entropy, SVB / N lnN (in agreement with Refs. [7,8]);
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however, for data up to N ¼ 7, the von Neumann entan-
glement entropy convincingly shows a scaling of SvN / N,
thus obeying the area law.

Model and methods.—We consider the spin-1=2
Heisenberg Hamiltonian, given byH ¼ P

hijiSi � Sj, where

the sum is over nearest-neighbor lattice sites. Geometries
studied are 1D chains and multileg ladders with length L
and number of legs N. We employ two complementary
numerical techniques, the valence bond basis QMC and
DMRG, both of which give unbiased approximations to the
ground state of the Hamiltonian at zero temperature. SvNA is

naturally accessible through the DMRG algorithm [10]. At
each step of the algorithm, the wave function of the system
is approximated by keeping only the states with largest
coefficients in the Schmidt decomposition for a given
bipartition into regions A and B � ∁A. To find the basis
entering the Schmidt decomposition for region A, the
reduced density matrix �A is calculated and diagonalized,
thus allowing easy calculation of Eq. (1). The truncation of
the basis implies that only a lower bound for SvNA is cal-

culated, so care must be taken to ensure that enough of the
eigenvalue spectrum is included to converge SvNA to suffi-

cient accuracy; typically the number of states required is
larger than that needed to converge the energy alone [11].

SVBA can be calculated using the valence bond basis

QMC simulation proposed by Sandvik [9]. The algorithm
we use is the simple single-projector method, with lattice
geometries constructed to match those used by DMRG.
The ground state of the system is projected out by repeated
application of a list of nearest-neighbor bond operators, a
number of which are changed each step. The change is
accepted with a probability of 2nb=2na where na (nb) is the
number of off-diagonal operators in the current (last ac-
cepted) step. Measured quantities such as energy or SVBA
are then calculated by a weighted average over all the
valence bond states obtained by this procedure.

One-dimensional chain.—We consider first the case of
Heisenberg chains (N ¼ 1) of length L, simulating both
open (OBC) and periodic (PBC) boundary conditions. The
DMRG algorithm requires the regions A and B to be
topologically connected, so in 1D the bipartition is defined
by a site index x with sites within the interval ½1; x� (½xþ
1; L�) belonging to region A (B) [thus we can label SA by its
site index, SðxÞ]. We stress that the QMC and DMRG
results are on the same geometry and Hamiltonian, and
reproduce the same ground state energies; Fig. 1 (and
subsequent figures) should be considered as exact com-
parisons between SVB and SvN.

The 1D Heisenberg model is known to be critical and
thus can be mapped to a 2D classical Hamiltonian at its
critical point, which can be described by CFT in the limit
L ! 1. To address finite-length chains one can use the
conformal mappings x ! x0 ¼ ðL=�Þ sinð�x=LÞ for PBC
and x ! 2x0 for OBC. Calculations within CFT [12] obey
SvNðxÞ ¼ ðc=3Þ lnðx0Þ þ S1 for PBC and SvNðxÞ ¼ ðc=6Þ�
lnð2x0Þ þ lnðgÞ þ S1=2 for OBC, where c is the central

charge of the CFT, S1 is a model-dependent constant, and g
is Affleck and Ludwig’s universal boundary term [13].
Figure 1 illustrates simulation results in both cases, the

left-hand (right-hand) panels corresponding to PBC
(OBC). For PBC both SVB and SvN appear to fit well to
the CFT result, although SvN > SVB. The regression fit for
SvN shows very good convergence with the central charge
predicted by CFT, c ¼ 1, while the fit for SVB yields a
lower value of c than predicted. For OBC both SvN and SVB

split into two branches, the upper (lower) corresponding to
an odd (even) number of lattice sites in A. This reflects a
well-known ‘‘dimerization’’ effect induced by OBC [14].
Notice that contrary to the PBC case, now SvN < SVB. A
regression fit of the lower branch to the form ðc=6Þ lnð2x0Þ
(inset) shows excellent convergence of SvN to the central
charge predicted by CFT, c ¼ 1, once finite-size effects
and the proximity of the data to the open boundaries are
taken into account. In contrast, SVB deviates significantly
from the CFT result, giving c > 1 when all or most of the
data are included in the fit, changing to c < 1 as data
closest to the open boundary is systematically excluded
[15], e.g., for z ¼ L=2, cL!1 � 0:85.
Multileg ladders.—Moving away from the 1D chain, one

can add ‘‘legs’’ to the lattice in a systematic way. In this
case the sum over nearest neighbors is extended to neigh-
bors along rungs as well as along legs. As noted before,
DMRG imposes constraints to the subregion geometry. In
multileg ladders we choose to sweep in a 1D path that visits
first bonds sitting in rungs rather than bonds sitting in legs
(see Fig. 2). DMRG computational demands increase dra-
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FIG. 1 (color online). Entanglement entropies for a 1D
Heisenberg chain with PBC and OBC. Upper panels show the
entropies as a function of the conformal distance x0 ¼ ðL=�Þ�
sinð�x=LÞ for 100-site chains. Lower plots show the central
charge c, obtained by fitting the numerical data to the CFT result,
for several L. For PBC, c is calculated with the two smallest x0
points removed. For OBC, the fits depend on the number of sites
included z, which we systematically decrease by removing x0
data points from the outside ends of the chain. c is shown for SvN

(closed symbols) and SVB (open symbols) for system sizes L ¼
64 (circles), L ¼ 100 (squares), L ¼ 128 (diamonds), and L ¼
200 (triangles)
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matically with the number of legs, so in this Letter we
restrict ourselves to ladders with OBC up to N ¼ 7 legs.
The QMC method lacks this limitation and one can go up
to N ¼ 20 with minimal CPU effort.

Figure 2 shows SvN and SVB calculated for the three-leg
and four-leg ladder. As for the OBC 1D chain, SVB > SvN.
Entropy shows different behavior depending on N being
even or odd. Even-leg ladders have a spin gap [16], and
thus only sites within distances from the boundary between
A and B smaller than the correlation length � contribute to
the entanglement, yielding Sðx * �Þ ¼ const. In contrast,
odd-leg ladders are gapless, and thus all sites contribute to
the entanglement, yielding SðxÞ / lnðx0Þ, which follows the
CFT result in analogy to the 1D case. As can be seen, SðxÞ
splits into branches, with a (quasi)periodic structure super-
imposed over the main dependence on x, the period being
N (2N) for even- (odd-)leg ladders. This reflects the peri-
odicity of the underlying 1D path through which the algo-
rithm sweeps, and the fact that valence bonds within the
same rung are energetically favored [16]. The doubled
period for odd-leg ladders is due to the same dimerization
effect as in Ref. [14].

Area law in multileg ladders.—We can use these results
to address the question of the adherence of the 2D Néel
state to an area law. To do so, we define the lattice geome-
try such that region A is rectangular, cutting a multileg
ladder cleanly across all legs, so that the ‘‘area’’ separating
region A and B is equivalent to the number of legs in the
ladder N. We choose the region A to contain 2N2 sites, to
have an aspect ratio of order unity. In contrast, the entan-
glement entropy of a long narrow region would be domi-
nated by the behavior of the gapless mode for odd-leg
ladders. The 2:1 aspect ratio makes the region length
even for all N, reducing even-odd oscillations.

Figure 3 illustrates the simulation results for N-leg
ladders. Plotting SðxÞ=N versusN on a log scale, we obtain

a multiplicative logarithmic correction to the SVB area law,
in agreement with results from Refs. [7,8]. However, the
linear slope is not present in the plot of the SvN data from
the DMRG, which convincingly approaches a constant for
large N [17]. Clearly, for SvN our data suggest for N-leg
ladders that the area law is valid in the N ! 1 limit (i.e.,
the Néel state) as well, leading one to conclude that the
multiplicative logarithmic correction occurs in SVB only.
One can compare SVB to data obtained for free fermions,
which has a well-known [18] logarithmic correction to the
area law for SvN (Fig. 3). In the next section, we explain
SVB in the context of the bond length distribution in the
QMC simulation. We note also that, contrary to the sug-
gestion in Ref. [7], a gapless Goldstone mode will not give
a logarithmic divergence to SvN since a gapless bosonic
mode in 2D obeys an area law [19]. We have also done a
spin-wave calculation of SvN for this system and found an
area law, albeit with SðxÞ=N � 0:2, slightly lower than
suggested for spin-1=2 in Fig. 3.
Bond length distribution.—Sandvik defined the bond

length distribution Pðx; yÞ as the probability of a bond
going from site x to site y, and found that Pðx; yÞ �
jx� yj�p with p � 3 in the Néel state [9]. This value of
p gives the logarithmic divergence in SVB, as can be found
by directly calculating

SVBA ¼ X

x2A;y2B

Pðx; yÞ lnð2Þ: (3)

We can understand the value of p from a scaling argu-
ment similar to that in Ref. [20]. Consider the number of
bonds of length l exiting a region of linear size l. For p >
4, this scales to zero and such a state should have no long-
range order. For p ¼ 4, this number is l-independent,
corresponding to a critical state (p ¼ 2 is the critical power
in 1D, matching the observed logarithmic behavior of
SVB). For p < 2, the bond length distribution is unnorma-
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FIG. 2 (color online). Entanglement entropies for three-leg
(left) and four-leg (right) ladder systems with OBC and 100
sites per leg. For odd-leg ladders, SðxÞ / lnðx0Þ. The left-hand
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FIG. 3 (color online). Entanglement entropies divided by N,
for N-leg Heisenberg (filled symbols) and free-fermion (open
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lizable, and all bonds are long, so that there is no short-
range order. p ¼ 3 represents a state with both long- and
short-range order. There is a heuristic argument that p ¼ 3
corresponds to a state with Goldstone modes: the correla-
tion function of two spins is the probability that they lie on
the same loop. This can be estimated by Green’s function
of a Lévy flight with power law distributed steps with
power 3, reproducing the power law decay of correlations.

Discussion.—In this Letter, we have compared scaling
properties of the valence bond entanglement entropy (SVB)
[7,8] to the von Neumann entanglement entropy (SvN) in
the spin-1=2 Heisenberg model on multileg ladder geome-
tries, using QMC and DMRG simulations. In 1D, we find
that SVB mimics the behavior of SvN closely, although it is
less than SvN for periodic chains, and greater than SvN for
open chains. In addition, fits to 1D conformal field theory,
which are excellent for SvN calculated via DMRG, appear
to deviate significantly for SVB in the large chain-size limit,
approaching c < 1 for both boundary conditions [15].

The fact that SVB can be either greater or less than SvN

can be understood through simple examples. Let jðijÞ�
ðklÞ . . .i denote a state in which sites i; j are in a singlet,
sites k; l are in a singlet, and so on. Consider an 8-site
chain, with sites 1–4 in region A. Then, the state jð12Þ�
ð34Þð56Þð78Þi þ jð14Þð32Þð58Þð76Þi has vanishing SVBA
since no bonds connect A to B, but nonvanishing SvNA �
0:325. On the other hand, consider a 4-site chain, with
sites 1 and 3 in region A. Then, the state jð12Þ�
ð34Þi þ jð14Þð32Þi has a maximal SVBA , equal to 2 lnð2Þ �
1:386, while SvNA ¼ lnð3Þ � 1:099 is smaller. This second
state has the maximum possible Néel order parameter: it is
the equal amplitude superposition of all configurations of
bonds connecting the two sublattices. Thus, it is not sur-
prising that states with Néel order show SVB > SvN, a fact
which we have demonstrated numerically on multileg lad-
der systems with open boundaries.

Defining the boundary between the two entangled re-
gions as being bipartitioned by a cut across all legs on a
ladder, we have shown using DMRG that SvN obeys the
area law in the many-leg limit. Since DMRG can also
accurately measure logarithmic size dependencies of SvN

(in 1D critical systems), this suggests that simulation pro-
cedures similar to those here might enable the measure-
ment of area-law corrections in SvN as indicators of exotic
phases in other models, such as those with a spinon Fermi
surface [21].

The valence bond entanglement entropy harbors a multi-
plicative logarithmic correction for the Néel ground state,
which we have shown is caused by the valence bond length
distribution, and is not present in SvN. It is clear that SVB is
a reasonable measurement of entanglement, readily acces-
sible to numerical simulations in 2D and higher, and ca-
pable of reproducing the area law in some gapped ground
states [7,8]. However, the inability of SVB to provide a
bound on SvN (unlike other measures such as Renyi en-
tropies), along with its discrepancies from SvN in 1D

critical systems and the 2D Néel state, must be taken into
account in proposals to use SVB for future tasks such as
characterizing topological phases or studying universality
at quantum phase transitions.
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