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We reveal from numerical study that the optical Hall conductivity �xyð!Þ has a characteristic feature

even in the ac (� THz) regime in that the Hall plateaus are retained both in the ordinary two-dimensional

electron gas and in graphene in the quantum Hall regime, although the plateau height is no longer

quantized in ac. In graphene �xyð!Þ reflects the unusual Landau level structure. The effect remains

unexpectantly robust against the significant strength of disorder, which we attribute to an effect of

localization. We predict the ac quantum Hall measurements are feasible through the Faraday rotation

characterized by the fine-structure constant �.
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Introduction.—There is a continuing fascination with the
quantum Hall effect (QHE), despite its long history, along
various avenues. While most of the works have concen-
trated on static properties, one direction that has not been
fully explored is the optical properties of the quantum Hall
system, which is exactly the purpose of the present study.
One motivation comes from the fact that recent experi-
mental advances in spectroscopy in the THz regime are
making optical measurements a reality for QHE systems
with the relevant energy scale being THz in magnetic fields
of a few tesla [1,2]. To be more precise, these authors have
observed ellipticity and Faraday rotation in a usual QHE in
a two-dimensional electron gas (2DEG), and found a reso-
nance structure at a cyclotron frequency !c � THz from
the Hall angle, �Hð!Þ ¼ 1

2 argðtþð!Þ=t�ð!ÞÞ, which is

directly connected to optical conductivity, since the trans-
mission coefficients, t�ð!Þ ¼ 2n0=½n0 þ ns þ ��ð!Þ=
ðc"0Þ�, are related to the optical conductivity for circularly
polarized light via ��ð!Þ ¼ �xxð!Þ � i�xyð!Þ [3,4].

Another motivation of the present study is the recent
emergence of the physics of graphene, where the anoma-
lous QHE specific to the ‘‘massless Dirac’’ electrons [5,6]
is attracting keen interests. So the second purpose of the
Letter is to study �xyð!Þ for graphene in the QHE regime

as compared with those in the ordinary 2DEG. For gra-
phene, optical properties have begun to be studied: the
longitudinal optical conductivity �xxð!Þ has been mea-
sured through the transmission [7], or theoretically exam-
ined in terms of the cyclotron emission [8]. Here we look
for features in the optical Hall conductivity �xyð!Þ in

graphene.
Theoretically, the question is how the static quantum

Hall effect, a topological phenomenon [9,10], should
evolve into the optical Hall conductivity �xyð!Þ in the ac

regime. Naively, one might expect the plateau structure in
the Hall conductivity may be immediately washed out as
we go into an ac regime where the topological protection
no longer exists. To explore whether this intuition holds,
here we have calculated the optical Hall conductivity in

ordinary and graphene QHE systems to probe the ac quan-
tum Hall physics, where the conductivity is calculated
from the Kubo formula with a numerical (exact diagonal-
ization) method, since we want to incorporate effects of
Anderson localization. We start with the ordinary 2DEG,
since even for 2DEG the ac conductivity has only been
dealt with by a phenomenological (Drude) formalism [3]
or with Maxwell’s equations [11].
We shall show the following from numerical study.

(i) The plateau structure in the QHE in 2DEG is retained,
up to significant degree of disorder, even in the ac (THz)
regime, although the heights of the plateaus are no longer
quantized in the ac regime. We attribute the unexpected
robustness to an effect of localization, where the existence
of extended states and mobility gaps between them ensure
the step structures in the ac Hall conductivity. (ii) For
graphene, the optical Hall conductivity reflects the unusual
Landau level structure. (iii) We then predict the ac quantum
Hall effect can be detected through Faraday-rotation mea-
surements as a step structure in �Hð!Þ, whose magnitude
is estimated to be of the order of the fine-structure constant
� (�7 mrad), which is within experimental feasibility. If
one utilizes a freestanding graphene, for which � has been
seen as transparency [12], the rotation angle should be
exactly �.
Aword about the nature of the random potential here: it

has long been known that the effect of the Anderson
localization on the (static) conductivity is qualitatively
different between short-range and long-range scatters in
2DEG [13]. Long-range potential should also be relevant to
the ripples in graphene. Of particular interest, in the static
graphene QHE, is that graphene has an anomalously robust
n ¼ 0 Landau level and the associated QHE step against
disorder when it is slowly varying, which is related to
topologically protected Atiyah-Singer’s theorem [5,14–
16]. So here we examine �xyð"F;!Þ for long-range scat-

terers in the exact diagonalization study that takes care of
the localization effects, where we have a question in
mind—what will become of the Hall plateau structure in
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the ac regime, especially for the n ¼ 0 Landau level in
graphene.

Optical Hall conductivity in ordinary QHE.—Let us
first look at the optical Hall conductivity in the QHE in
2DEG as realized in GaAs=AlGaAs with a Hamiltonian,
H0 ¼ 1

2m� ðpþ eAÞ2, and the current matrix elements,

jn;n
0

x ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@!c=2m
�p ð ffiffiffi

n
p

�n�1;n0 �
ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

�nþ1;n0 Þ, jn;n
0

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@!c=2m
�p ð ffiffiffi

n
p

�n�1;n0 þ
ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

�nþ1;n0 Þ, where n, n0 are
the Landau indices and !c the cyclotron frequency.

To include the effect of disorder, we employ the exact
diagonalization method for the disorder described by ran-
domly placed scatterers with a potential VðrÞ ¼
P

juj expð�jr�Rjj2=2d2Þ=ð2�d2Þ, where d is the range

of the potential, while the strength of the potential, each
placed at Rj, is assumed to take uj ¼ �u with random

signs so that the density of states broadens symmetrically
in energy. We adopt d ¼ 0:7‘, which is comparable to the

magnetic length ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffi

@=eB
p

. The degree of disorder can be
characterized by �2=4 ¼ u2Nimp=½2�ð‘2 þ d2ÞL2� with

Nimp being the number of impurities, where � measures

the Landau level broadening [8,17,18]. Diagonalization of
the Hamiltonian is done by retaining 7 Landau levels. We
have numerically checked that this is sufficient in the
energy range considered here for the linear sample dimen-
sion of L ¼ 15‘. For the ensemble average we have taken
5000 random configurations.

To calculate the optical conductivity in the QHE system
we use the Kubo formula,

�xyð!Þ ¼ i@e2

L2

X

�a<"F
�b�"F

1

�b � �a

�

jabx jbay
�b � �a � @!

� jaby jbax
�b � �a þ @!

�

; (1)

where �a is the eigenenergy, jabx the current matrix ele-
ments between the eigenstates, and "F the Fermi energy.

Figure 1 shows the results for the usual QHE system. We
plot �xy on an (!, "F) plane, where the ! ¼ 0 cross

section corresponds to the familiar static QHE. We imme-
diately notice two features: (i) �xyð!Þ for a fixed value of

"F exhibits a resonance structure around the cyclotron
frequency (as observed in the experiment [1]); (ii) away
from the resonance, a step-like structure is preserved in
�xyð!Þ as a function of "F for each value of !. Although

the step heights are not quantized exactly, the flatness is
surprisingly preserved as seen in Fig. 1(b). If we first look

at the clean limit, we can rewrite Eq. (1) as �xyð!Þ !
n e2

h
!2

c

!2
c�!2 , since we can replace "nþ1 � "n with @!c for

"F between n and nþ 1 Landau levels, which shows a
resonance structure around ! ’ !c.

The step structure is in fact a quantum effect (outside the
Drude picture). In the dc QHE, the localization is the cause
of the plateaus in the Aoki-Ando picture [19]. In the ac
QHE, the Kubo formula, Eq. (1), contains !, and does not

simply reduce to a topological expression. In this sense the
result for the robust plateaus is quite nontrivial.
The physical insight for the unexpectedly robust ac Hall

step structure is that the main contribution to the optical
Hall conductivity comes from the delocalized states whose
existence ensures the robust step structure in ac Hall con-
ductivity. To be more precise, the magnitude of the current
matrix elements in Eq. (1) is much larger for the extended
states than for localized states, so that the optical Hall
conductivity is dominated by the transitions between the
extended states which reside around the center of each
Landau level, while the localized states give rise to the
step structure. Thus the message here is that the existence
of localized and extended states manifests itself as step
structures even in the ac regime.
Optical Hall conductivity in graphene.—We now turn to

the optical Hall conductivity in graphene. Here we again
adopt the exact diagonalization method for the disorder
potential introduced by randomly placed scatterers. When
the range of the random potential is much larger than the
lattice constant in graphene, the scattering between K and
K0 points in the Brillouin zone is suppressed, so that we can
assume the random term takes a diagonal form in the Dirac
Hamiltonian as

H0þV¼vF
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A
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(2)

So we adopt the Dirac model as in Refs. [14,20] to obtain
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FIG. 1 (color online). Exact diagonalization result for (a) the
optical Hall conductivity �xyð"F;!Þ with � ¼ 0:2@!c, (b) static

[blue (dark gray)] and optical [red (light gray)] Hall conductivity
�xyð"F;!Þ, and (c) �xyð"F;!Þ with larger disorders � ¼ 0:5@!c

in usual QHE system.
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wave functions and conductivity in the presence of disor-
der. Retaining 9 Landau levels with system size L ¼ 15‘,
we have calculated �xyð"F;!Þ with the Kubo formula

Eq. (1) with the current matrix for graphene [8,21].
In the result, Fig. 2, we notice several features distinct

from the result for the ordinary QHE system (Fig. 1):
(i) The optical Hall conductivity �xyð"F;!Þ exhibits a

more complex structure, which reflects the Landau levels,

sgnðnÞ ffiffiffiffiffiffijnjp

@!c with !c ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eB=@
p

, that are not uni-
formly spaced for the massless Dirac dispersion. Thus a
series of resonances appear around many allowed transi-
tions, jnj � jn0j ¼ �1. More precisely, the low-! reso-
nances appear as n ! nþ 1 transitions, while resonances
(� n ! nþ 1) across the Fermi point emerge in larger !
region. (ii) Away from these resonances, we again observe
that step-like structures remain in the optical Hall conduc-
tivity, as clearly seen in Fig. 2(b). Because of the electron-
hole symmetry, �xyð"F;!Þ is odd in "F throughout, so the

step structure is symmetric as well.
If we more closely look at the result, while the ac Hall

steps for larger values of jnj are smeared for smaller values
of! because different Landau levels sit close to each other,
the ac Hall steps for small values of nð¼ 0;�1Þ are robust.
Specifically, the n ¼ 0 step remains up to � as large as
0:7@!c. One reason should be the n ¼ 0 Landau level
stands alone, but another one we note is the electron-hole
symmetry. Namely, the self-energy (arising from the ran-
domness) in Green’s function contains off-diagonal ele-
ments between �n Landau levels, where n � 0 states are
significantly affected by this effect, while the n ¼ 0
Landau level has itself as the electron-hole partner with

no off-diagonal element. In terms of a Hamiltonian, gra-
phene QHE is the square root of the usual QHE, so that the
nth Landau level in the usual QHE bifurcates into � ffiffiffi

n
p

Landau levels in graphene but not for n ¼ 0.
We note in passing that the present result in the exact

diagonalization differs from what we would have with the
self-consistent Born approximation [22], where the Landau
level broadening and the plateau-to-plateau transition
width for different Landau indices are similar �� [21],
since localization is not considered.
Robustness of the step structure.—We finally examine

how the step-like structure in the optical Hall conductivity
vanishes as we further increase the degree of disorder. We
have calculated �xyð"F;!Þ against the strength of disorder,
�, for each value of ! with exact diagonalization. For the
ordinary QHE system in Fig. 3, we can see that the step
structure remains up to � ’ 0:7@!c for each value of !,
both below and above the cyclotron resonance. While the
density of states (not shown) broadens with a width ��,
the step structure in the optical Hall conductivity �xyð!Þ is
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FIG. 2 (color online). Exact diagonalization result for (a) the
optical Hall conductivity �xyð"F;!Þ with � ¼ 0:2@!c, (b) static

[blue (dark gray)] and optical [red (light gray)] Hall conductivity
�xyð"F;!Þ, and (c) �xyð"F;!Þ with larger disorders � ¼ 0:5@!c

for the graphene QHE system.

FIG. 3 (color online). Exact diagonalization result for the
optical Hall conductivity, �xyð"F;!Þ, plotted against Fermi

energy and disorder strength � for various values of frequency
! ¼ 0, 0:4!c, 0:9!c, 1:5!c in (a) the ordinary and (b) graphene
QHE system.
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blurred with �much more slowly. We can also notice in the
result for! ¼ 0:9!c, very close to the cyclotron resonance
where the ac Hall conductivity exceeds 100 times e2=h,
that the step structure is surprisingly preserved in such a
resonant region.

Let us move on to graphene QHE (Fig. 3). The step
structure for n � 0 in the optical Hall conductivity
�xyð"F;!Þ is less robust against disorder than in 2DEG,

again due to the multiple cyclotron resonance frequencies.
However, the step corresponding to n ¼ 0 Landau level is
robust unless ! is too close to a resonance. In the static
Hall conductivity �xyð! ¼ 0Þ, n � 0 Hall steps are

smeared as soon as Landau levels are merged while the
step associated with n ¼ 0 Landau level is robust, which
indicates that the extended states in n ¼ 0 Landau level are
unusually robust [14,16]. The present ac result indicates
that the step in �xyð"F;!Þ associated with n ¼ 0 Landau

level exhibits special robustness against disorder in the ac
regime as well, which we take to be the effect of localiza-
tion and the electron-hole symmetry.

The topological formulation of the static Hall conduc-
tivity relies on gaps between the mobility edges. The
mobility gap structure is considered to bring about the
robust step structure in the ac region if the frequency @!
is smaller than @!c (the energy spacing between the delo-
calized states). The present result (Fig. 3) does indicate that
the robust step structure survives most prominently for
!<!c. In this sense the topological structure associated
with extended states remains in the ac regime.

Faraday rotation.—To summarize, we have revealed
that the optical Hall conductivity in both the ordinary
QHE and graphene QHE systems has plateau structures
that persist even in ac regimes for significant strengths of
disorder. Finally let us mention the experimental feasibil-
ity. We propose that the ac Hall steps should be observable
through accurate Faraday-rotation measurements in the
THz to far-infrared spectroscopy. This is because the
Faraday-rotation angle �H is directly connected to the

optical Hall conductivity via �H ¼ 1
2 argðtþð!Þ

t�ð!ÞÞ �
1

ðn0þnsÞc"0 �xyð!Þ, where n0ðnsÞ is the refractive index of

air (substrate), and we have assumed n0 þ ns � ��=ðc"0Þ
in the last line. Hence the Faraday-rotation angle is pro-
portional to �xyð!Þ, so that the step structure in �xyð!Þ
should be observed as jumps in Faraday-rotation measure-
ments. We can estimate the size of the jumps ��H by
putting �xy � e2=h (when ! is well below the resonance),

so that

��H � 1

ðn0 þ nsÞc"0
e2

h
� 2

n0 þ ns
�� 7 mrad; (3)

where � ¼ e2=ð4�"0@cÞ is the fine-structure constant. The
steps in the Faraday-rotation angle should be of the order of
the fine-structure constant. Recently Shimano et al. have
achieved an experimental resolution of �1 mrad [2], so
that the present effect is well within the experimental

feasibility. While Nair et al. [12] have seen the fine-
structure constant from visual transparency of graphene,
the proposal here amounts to the fine-structure constant
seen from a rotation.
One future problem is how we can capture �xyð!Þ in

terms of the dynamical scaling argument. There is litera-
ture on the dynamical scaling for �xxð!Þ and associated
dynamical critical exponent [23], so an extension to
�xyð!Þ should be interesting, since we have noticed that

the step structure becomes slightly sharper when we go
from the sample size L ¼ 10‘ to 15‘.
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