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Measurements of basal plane longitudinal �bðBÞ and Hall �HðBÞ resistivities were performed on highly

oriented pyrolytic graphite samples in a pulsed magnetic field up to B ¼ 50 T applied perpendicular to

graphene planes, and temperatures 1:5 K � T � 4:2 K. At B > 30 T and for all studied samples, we

observed a sign change in �HðBÞ from electron- to holelike. For our best quality sample, the measurements

revealed the enhancement in �bðBÞ for B > 34 T (T ¼ 1:8 K), presumably associated with the field-

driven charge density wave or Wigner crystallization transition. In addition, well-defined plateaus in

�HðBÞ were detected in the ultraquantum limit revealing possible signatures of the fractional quantum

Hall effect in graphite.
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The behavior of matter in a very strong magnetic field
(B) continuously attracts the interest of physicists work-
ing in various fields ranging from astrophysics [1,2] to
semiconductors [3]. The field-induced Landau level quan-
tization in (semi)conductors leads to a variety of spec-
tacular phenomena such as, e.g., integer and fractional
quantum Hall effects (IQHE and FQHE) in two-
dimensional (2D) systems [3]. In three-dimensional (3D)
samples, a strong enough field localizes the electron (hole)
motion in the plane perpendicular to B, while the mo-
tion along B remains intact [4]; this can be viewed as the
field-induced 3D ! 1D dimensional crossover. The re-
duced dimensionality in the electron system becomes pro-
nounced for B> BQL (QL stands for quantum limit) that

pulls all carriers into the lowest Landau level (LLL). In this
limit, competing charge density wave (CDW) and super-
conducting correlations [5], or excitonic [6] instabilities
driven by the field are expected. In addition, a field-
induced Luttinger liquid state has been proposed [7]. Low
carrier density 3D semimetals such as bismuth and graph-
ite have been considered [5–7] as promising materials for
the experimental observations of above phenomena. Very
recently, 3D FQHE in both bismuth and graphite has been
theoretically proposed [8,9], corroborating the experimen-
tal results obtained for bismuth [10]. In contrast to bismuth,
graphite is extremely anisotropic material with weakly
coupled graphene layers, in which exciting physics of
one, two, or few layers can be revealed [11]. The present
work reports the first experimental results showing that
FQHE may occur in graphite, pointing out on its quasi-
2D nature.

It has been known for a long time that magnetic field
B> 20 T> BQL ¼ 7–8 T, applied along the hexagonal c

axis, induces in graphite an anomalous high-resistance
state (HRS) that can be detected using either basal-plane
�bðB; TÞ or out-of-plane �cðB; TÞ resistivity measurements
[12–18]. The boundaries that trace the HRS domain on the
B-T plane [15,17] are in qualitative agreement with theo-
retical expectations [19] for the Landau-level-quantiza-
tion-induced normal metal—charge density wave (CDW)
as well as the reentrant CDW-normal metal transitions.
However, while the CDW is predicted to occur in the
direction of magnetic field [19], the experimental results
[13,14] indicate the in-plane character of CDW, or for-
mation of 2D Wigner crystal (WC) state(s) [20,21].
Supporting either CDW- or WC-based scenarios, the
non-Ohmic electrical transport was measured in HRS
[14,18]. Typically, for T ¼ 2 K, the HRS emerges in the
field interval 25 T<B< 52 T, and the HRS does not
occur for T > 10 K [17].
So far, all the HRS studies [12–18] were performed on

artificially grown Kish or natural single crystalline graphite
samples. To the best of our knowledge, no measurements
above 28 T [12] were performed for HOPG, and no Hall
resistivity �HðBÞ measurements above 30 T [16] were
made on any type of graphite.
Recent magnetoresistance [22,23] and scanning tunnel-

ing spectroscopy (STS) [24] experiments revealed the in-
teger quantum Hall effect (IQHE) in graphite. The IQHE
takes place only in strongly anisotropic (quasi-2D) HOPG
samples with the room temperature out-of-plane/basal-
plane resistivity ratio �c=�b > 104, and mosaicity �0:5�
(FWHM obtained from x-ray rocking curves). Together
with the high electron mobility �� 106 cm2=V s [25],
this makes HOPG a promising system for the FQHE
occurrence.
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In the present work, we studied magnetoresistance in
HOPG in pulsed magnetic field up to B ¼ 50 T and
1:5 K � T � 4:2 K. The measurements were performed
in Ohmic regime with 300 ms for the total pulse length in
ac configuration, at LNCMPI (Toulouse, France). Addi-
tional measurements were made using Janis 9T-magnet
He-4 cryostat.

Commercially available HOPG samples ZYA and SPI-3
were measured. The sample parameters are: FWHM ¼
0:4�, �c=�b¼4�104 (�b¼5��cm and �c¼0:2�cm)
for ZYA, and FWHM ¼ 3:5�, �c=�b ¼ 3:8� 103 (�b ¼
40 ��cm and �c ¼ 0:15 �cm) for SPI-3 HOPG samples
(the resistivity data were obtained for B ¼ 0 and T ¼
300 K). X-ray diffraction (�-2�) measurements revealed
a characteristic hexagonal graphite structure in the Bernal
(ABAB . . . ) stacking configuration, with no signature for
the rhombohedral phase and the following unit cell pa-
rameters: a = 2.48 Å and c = 6.71 Å.

Here, we report the results obtained on the ZYA sample
of dimensions l� w� t ¼ 2:5� 2:5� 0:5 mm3. The
magnetic field was applied parallel to the hexagonal
c axis (Bkckt), and �bðBÞ, �HðBÞ were recorded using
the van der Pauw method, sweeping the field between
�50 and þ50 T.

From the data presented in Figs. 1(a) and 1(b), one
observes that �bðBÞ goes through the maximum at Bm1 ¼
18 T, develops two local minima at B� ¼ 30 T and B�1

¼
34 T, and passes through the second maximum at Bm2 �

43 T. Thus, �bðBÞ represents all characteristic features
reported for Kish graphite [17], where, e.g., the resistivity
minima at B� ¼ 28 T and B�1

¼ 33 T, attributed to mul-

tiple field-induced CDW phases, were measured at T ¼
1:7 K.
The onset of HRS in Kish graphite is accompanied by a

rapid decrease of �HðBÞ � �HðBÞ ¼ �eðne � nhÞ=B [16],
where ne and nh are majority electron and hole carrier
densities, respectively. At low enough temperatures, �HðBÞ
tends to zero as B approaches �30 T, suggesting that
�HðBÞ may change its sign from ‘‘minus’’ to ‘‘plus’’ with
a further field increasing [16]. Our results [Fig. 1(c)] give
the experimental proof that the sign of �HðBÞ changes at
BH ¼ 43 T. The straightforward explanation of this effect
would be the carrier density imbalance change from ne >
nh (B< BH) to nh > ne (B> BH). This provides us with a
new insight on the resistivity drop taking place at B> Bm2.
Namely, one assumes that decrease of both �bðBÞ and
��HðBÞ at B> Bm1 originates from the hole density in-
crease [12], whereas the HRS is due to the field-induced
Wigner crystallization of electrons or CDW formation.
Then, nonmonotonic �bðBÞ can be simply understood us-
ing the equation for parallel resistors �b ¼ �be�bh=ð�be þ
�bhÞ, [�beðBÞ and �bhðBÞ are electron and hole basal-plane
resistivities, respectively], without invoking any reentrant
transition in the electronic state (noting, �b � �H).
We also measured the similar sign reversal in �HðBÞ at

B� 30–35 T for two SPI-3 samples. However, due to a
poorer quality of those samples, neither negative magne-
toresistance nor HRS were detected. Instead, �bðBÞ satu-
rates for B> 18 T.
Next, we focus our attention on plateaulike and oscil-

latory features in �HðBÞ and �bðBÞ, seen in Figs. 1–4 as a
fine structure.
In Fig. 2, we plotted ��bðBÞ vs 1=B for B< 5 T, where

��bðBÞ is obtained after subtraction of the monotonic
background resistivity �b

bgðBÞ: the data clearly demon-

strate that the fine structure is due to Shubnikov–de Haas
(SdH) oscillations. The obtained period of SdH oscillations
�ðB�1Þ ¼ 0:208� 0:004 T�1 (the frequency B0 ¼ 4:8�
0:1 T) corresponds to the extremal cross section of the
Fermi surface of the majority electrons [26].
The analysis of experimental results obtained for B<

BQL [22,27] showed that electrons mainly contribute to the

measured �HðBÞ, whereas the contribution from Dirac-like
majority holes is tiny [27]. Thus, the measured IQHE
staircase is consistent with either conventional massive
electrons with Berry’s phase 0, or chiral massive electrons
having Berry’s phase 2�, as in graphene bilayer [28,29].
We stress that IQHE staircases measured for HOPG
[22,27] and graphene bilayer samples [29] overlap when
plotted as a function of the filling factor � ¼ B0=B [27],
testifying on the quasi-2D nature of HOPG. The inset in
Fig. 2 illustrates the QH plateau occurrence at � ¼ 1 and
� ¼ 2. In the same figure, we show �Hð�Þ measured [22]
for HOPG-UC (Union Carbide Co.) sample. It can be
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FIG. 1 (color online). (a) Basal-plane resistivity �bðBÞ mea-
sured up to B ¼ 50 T at T ¼ 1:8 K; (b) A detailed view of high-
field nonmonotonic behavior of �bðBÞ discussed in the text;
(c) Hall resistivity �HðBÞ demonstrating the sign change at
BH ¼ 43 T.
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readily seen that the main IQHE plateau is centered at
B ¼ B0 for both ZYA and UC HOPG samples, demon-
strating the universality in the behavior of these strongly
anisotropic samples. The Hall resistivity �Hð� ¼ 1Þ ¼
0:82 m�cm for ZYA HOPG was obtained from the mea-
sured Hall resistance RHð� ¼ 1Þ ¼ 16:5 m�, assuming
the uniform current distribution through the sample thick-
ness t ¼ 0:5 mm. Taking the distance between neigh-

boring graphene planes d ¼ c=2 ¼ 3:355 �A, one getsN �
1:5� 106 independent graphene (bi)layers contributing to
the measured signal. This gives the Hall resistance per (bi)
layer RH

hð� ¼ 1Þ ¼ N 	 RHð� ¼ 1Þ � 24:8 k�, that
practically coincides with the Klitzing fundamental Hall
resistance h=e2 ffi 25:8 k�. However, because of the
strong sample anisotropy (�c=�b ¼ 4� 104), the measur-
ing current can be concentrated within the effective
sample thickness teff < t [30], implying that the actual
value of RH

hð� ¼ 1Þ can be smaller. Taking the QH
plateau sequence RH

h ¼ h=4�e2 as predicted (and mea-
sured) for graphene bilayer [28,29], and the measured dif-
ference ��Hð�Þ¼�Hð�¼1Þ��Hð�¼2Þ�0:2m�cm
(Fig. 2, inset), one estimates the effective thickness of the

electron ‘‘layers’’ leff ffi 6:2 �A, responsible for IQHE.
Interestingly, the obtained value of leff agrees well with

the c axis lattice parameter c ¼ 6:71 �A, resembling the
theoretical result for IQHE in bulk graphite [31]. Whether
this is an accidental coincidence or it has a deeper reason,
remains to be seen. The sample resistivity ratio �c=�b ¼
4� 104 implies a very small tunneling amplitude in the c
axis direction t? � 3–5 meV [11] <@!c for B> 1–2 T,
allowing to consider independent QH states in each ‘‘bi-
layer,’’ see also [32].

The data presented in Fig. 3 demonstrate that plateaus in
�HðBÞ also take place for � � 1. As Figs. 3(a)–3(c) exem-
plify, plateaus and quasiplateaus are centered quite accu-
rately (within the error bar for B0 ¼ 4:8� 0:1 T) at

� ¼ 2=7, 1=4, 2=9, 1=5, 2=11, 1=6, 2=15, 1=8, 2=17, 1=9
[33]. It appears that all these numbers correspond to the
filling factors � ¼ 2=m (m ¼ 1; 2; 3; . . . ) proposed by
Halperin [34] for the case of bound electron pairs, i.e.,
2e-charge bosons. In principle, the existence of 2e bosons
in the ultraquantum limit can be justified assuming the
electron pairing driven by the Landau level quantization
[5]. ��HðBÞ steps between neighboring plateaus agree
with the FQHE scenario, as well. For instance, ��HðBÞ �
0:22 m�cm measured between � ¼ 1=4 and � ¼ 2=7
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[Fig. 3(a)] plateaus, coincides with the expected value
��HðBÞ ¼ ðh=8e2Þ 	 c � 0:216 m�cm.

It is worth noting that leff � c ¼ 6:71 �A is much smaller

than the magnetic length lB½ �A�¼ ð@=eBÞ1=2¼250=

B1=2½T1=2� in the whole studied field range. Thus, recent
3D models for FQHE [8,9], probably relevant to bulk bis-
muth [10], do not apply to highly anisotropic graphite.

On the other hand, one may argue against the QHE in
both bulk graphite and bismuth because �bðBÞ does not
vanish in the plateau region, and �bðBÞ> �HðBÞ. However,
small dips and not vanishing of the longitudinal resistivity
�xxðBÞ>�xyðBÞ were measured, e.g., for Bechgaard salt

ðTMTSFÞ2PF6 [35], Bi2�xSnxTe3 and Sb2�xSnxTe3 [36],
�-Mo4O11 [37] layered crystals, as well as for
GaAs=AlGaAs 2DES [38,39], in both IQHE [35–37] and
FQHE [38,39] regimes. In particular, in Ref. [39], FQH
states resulting from the melted Wigner crystal were de-
tected at very high global longitudinal resistance level of
Rxx � 1 M�.

Figure 4 illustrates the correlation between QH plateaus
and dips in ��bðBÞmeasured in the present work. Figure 4
also demonstrates that minima in ��bðBÞ are somewhat
shifted from the plateau centers which is the characteristic
feature of QHE in bulk materials [36,37]. Thus, it is
legitimate to treat the data obtained on graphite in a similar
way. For � > 2=7, no correlation between dips in ��bðBÞ
and plateaulike features in �HðBÞ is found, and no plateaus
corresponding to Halperin’s � ¼ 2=m fractional filling
factors can be unambiguously identified. Further studies
should clarify this observation.

In summary, we report the results of basal-plane Hall
resistivity �HðBÞ and longitudinal resistivity �bðBÞ mea-
surements performed on HOPG samples up to B ¼ 50 T.
The sign change in the Hall resistivity from electron- to
hole-type in ultraquantum limit is reported for graphite for
the first time. For our best quality samples, FQHE associ-
ated with majority electrons is detected for filling factors
� � 1, and ascribed to a quantum liquid of 2e bosons [34].
The obtained results provide evidence that strongly aniso-
tropic graphite can be considered as a system of quasi-2D

layers of the thickness leff � c ¼ 6:71 �A that exhibit in-
dependent integer (�  1) or fractional (� < 1) quantum
Hall states.
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