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Quantum fluctuations (QF’s) in the two-dimensional Hubbard model are visualized by superposition of

optimized nonorthogonal Slater determinants. In the half-filled system, QF’s consist of rotational and

translational motions of spinon-antispinon pairs, while in the lightly doped systems (� ¼ 0:96), those

motions of polarons form the QF’s. It is shown that an attractive interaction works between two polarons,

in the framework of a projected Hartree-Fock picture. At about 10% doping, the ground state has a stripe

structure and QF’s due to deviations from the uniform stripe. The present method gives the ground state

energies comparable or in some cases superior to the variational Monte Carlo method with a Gutzwiller

projection parameter.
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Large quantum fluctuations (QF’s) in interacting fer-
mion systems have been one of the central issues in
not only condensed-matter but also particle physics.
Especially, since the discovery of high-temperature super-
conductors, the two-dimensional (2D) electron system has
been a challenging target for theorists to try their many-
body methodologies. Numerical approaches, such as a
quantum Monte Carlo (QMC) simulation [1], a density
matrix renormalization group [2], and a variational
Monte Carlo (VMC) method [3], have been applied to cop-
per oxides, and succeeded to explain some of their impor-
tant properties in the framework of a 2D Hubbard model,
such as an antiferromagnetism in the half-filled system and
an insulator-metal transition by doping [4]. However, in
these numerical approaches, we obtain information only
through correlation functions or spectral functions. We
cannot usually see how such many-body structures are
realized or what units feel an attractive interaction. On
the other hand, conceptional approaches, such as a spin
bag [5], a resonating valence bond [6], and a FLEX [7]
pictures, are direct and easy to understand what is going on
in that system. But, it is difficult to estimate the accuracy of
such conceptional pictures, because of the large correlation
effects. In this Letter, we demonstrate that the electron
correlation effects are reasonably described as QF’s due
to spinons, polarons, and stripes, by using a resonating
Hartree-Fock (Res-HF) method. We will also show that
an attractive interaction works between two polarons.

In the Res-HF method, a many-fermion wave function is
constructed by superposition of nonorthogonal Slater de-
terminants (S dets) [8], such as

j�i ¼ XNS

n¼1

Cn

X

G

PGj�ni: (1)

Here, NS denotes the number of S dets. The molecular
orbitals of all the S dets j�ni, as well as their coefficients
Cn, are simultaneously optimized to minimize the Res-HF

energy. Nonorthogonality of S dets allows us to describe
the correlation effects efficiently [9,10]. In this method, the
DODS-type S dets are employed to incorporate the corre-
lation effects from symmetry broken states. To recover the
symmetry of the system, we adopt symmetry projections
(SP’s) for each S det, which are symbolically denoted by
PG in Eq. (1). In the following, we consider a square lattice
with a periodic boundary condition, which has a D4 and
translation symmetries. The SP corresponds to superposi-
tion of the Goldstone set for each symmetry broken state.
Details of the SP are given in Ref. [11]. Unique and
important feature of the present method is that we can
visualize QF’s by analyzing the structures of S dets. This
is the essential difference from other numerical ap-
proaches. For example, a large nuclear deformation in
the transition region of even nuclei was reasonably de-
scribed by superposition of prolate and oblate shapes
[12]. In this Letter, we apply the Res-HF method for the
2D Hubbard models.
The 2D Hubbard model is a standard model for interact-

ing electrons in layered materials, such as copper-oxides.
Its Hamiltonian is given by

H ¼ �t
XN

hi;ji�
ðayi;�aj;� þ ayj;�ai;�Þ þU

XN

i

ni;"ni;#; (2)

where t,U, andN represent a nearest-neighbor hopping, an
on-site Coulomb repulsion and a system size, respectively.
In the following, we focus on the normal states which
conserve a global gauge symmetry. The number of elec-
trons is denoted by Ne, and the energies are scaled by t.
First, we mention the Res-HF ground state energies. For

a small cluster of N ¼ 4� 4, the Res-HF wave functions
with 5 S dets well reproduce the exact diagonalization
calculations [13,14]. For example, in the case of U=t ¼
8, the Res-HF energies are�8:46 for the half-filled system
(Eexact ¼ �8:47) and �11:81 for Ne ¼ 14 (Eexact ¼
�11:87). Then, we compare the ground state energies for
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much larger systems (N ¼ 8� 8). In the case of a half-
filled system, the Res-HF wave function with NS ¼ 10 S
dets gives the total energy of�32:8 forU=t ¼ 8, while the
VMC wave function with a Gutzwiller (GW) projection
parameter (PP) gives�31:6 [15]. On the other hand, a new
VMC wave function, which includes an additional PP
promoting hole motion and kinetic exchange to a GW
one, gives �32:9 [16]. In the weaker interaction regime,
for example, at U=t ¼ 4, a Gaussian basis Monte Carlo
method was applied and its energy was �55:0 [17], while
the Res-HF method(NS ¼ 10) gives�54:7. In the case of a
doped system with Ne ¼ 60, the Res-HF wave function
with NS ¼ 10 S dets gives the total energy of �32:5 for
U=t ¼ 10. The VMC wave function with a GW PP on an
antiferromagnetic reference gives �32:1, while the VMC
wave function with a HF-Bogoliubov(HFB)-type reference
gives �33:3 [18]. The BCS-type reference significantly
lowers the VMC energy for the doped system. In this
Letter, however, we focus on the QF’s in the normal states,
since they would give a clue to understand the mechanism
of the high-TC superconductivity. The orbital optimization
makes the Res-HF wave functions converge in the same
quality even if we start with different trial S dets. Thus, the
Res-HF method provides reliable wave functions.

In the present research, the parameters (t, U) are set at
(1.0, 8.0), which would be reasonable for the copper-oxides
since some experimental data are explained with these
values [19]. In most cases, the system size is N ¼ 10�
10, and NS ¼ 10 S dets are employed to generate the Res-
HF wave functions. The correlation energies explained by
the Res-HF method are increased with the increase of NS.
For example, at U=t ¼ 8, the wave functions with NS ¼ 2,
5, and 10 S-dets give the ground state energies of �49:9
(�54:1),�50:2 (�54:5), and�50:4 (�54:7), respectively,
for the half-filled (Ne ¼ 96) system. Although the further
increase of NS will lower the energies, physics for QF’s,
shown below, is not largely affected. 10 S dets are enough
to obtain substantial information on QF’s.

Figure 1 shows the structures of three typical S dets
generating the Res-HF wave function at a half-filling.
Here, ASD (or NSD) is short for the alternating (or net)
component of the spin density (SD), and is given by

SD ðlx; lyÞ � hayðlx;lyÞ"aðlx;lyÞ" � ayðlx;lyÞ#aðlx;lyÞ#i
¼ NSDðlx; lyÞ þ ð�1Þðlxþly�1ÞASDðlx; lyÞ: (3)

The SD is shown in (a), where a blue (red) circle represents
a site with up (down) SD. The size of a circle represents the
amplitude of the SD. The ASD, depicted in (b), indicates
the phase and amplitude of the SD wave (SDW). The NSD
is shown in (c). We omit the figures showing the charge
density (CD), since there is no significant charge modula-
tion. Instead, the S dets have defects in the SDW which
suppress the ASD and have NSD. The substantial struc-
tures are indicated by ‘‘T-shaped enclosures’’ in (a) and
(c). There exists mismatch of the SDW in each enclosure.

These defects are called spinons. Their property is similar
to that of a neutral soliton in the 1D systems [20,21]. In
contrast to the 1D system, spinon and antispinon (S� �S)
are confined in the 2D system because their separation
creates further mismatches of the SDW perpendicular to
the pair direction. Figures 1(1) to 1(3) show two S� �S
pairs on different sites. Other S dets, which are not depicted
here, also have S� �S pairs. These S dets indicate vibration
of S� �S pairs (not inner motion of a single pair). As we
superpose the Goldstone set of each S det, the QF’s in the
half-filled system are described by the translational and
rotational motions of S� �S pairs, as well as their vibra-
tional motions.
Then, in Fig. 2, we show three typical S dets generating

the Res-HF wave function for Ne ¼ 96. The CD and its net
(NCD) and alternating (ACD) components are given by

CD ðlx;lyÞ� hayðlx;lyÞ"aðlx;lyÞ"þayðlx;lyÞ#aðlx;lyÞ#i
¼NCDðlx;lyÞþð�1Þðlxþly�1ÞACDðlx;lyÞ: (4)

Here, the NCD represents a hole density. Each S det has de-
fects in the SDW, whose substantial structures are denoted
by ’’cross-shaped enclosures’’ in (a). These defects sup-
press the ASD and induce the ACD as shown in (b) and (e).
There exist both the NSD and NCD in these suppressed
SDW regions, as seen from (c) and (f). We call these
defects polarons, since they have similar properties to a po-
laron in the 1D system [21]. We should note that they can
also be regarded as spin bags [5]. Figures 2(1) and 2(2)
show four polarons on different relative positions. The S
det shown in Fig. 2(3) has a S� �S pair, as well as four

FIG. 1 (color). Structures of three typical S dets generating the
Res-HF wave function for N ¼ Ne ¼ 100. SD and ASD are
commonly scaled and their maximum value is 0.920. The maxi-
mum value of NSD is 0.677. The total energy is �50:4.
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polarons. Other S dets, which are not depicted here, con-
tain these polarons. Thus, the dominant QF’s in the lightly
doped system are described by translation and rotation of
polarons as well as their vibration.

Here, let us consider how the energy of a polaron pair
depends on distance. One of the remaining questions on the
high-TC superconductivity is what units feel an attractive
interaction. In the unrestricted HF (UHF) approximation,
the state having two polarons is a stable solution for Ne ¼
N � 2 systems. As shown in Fig. 3, however, the UHF
energies are getting higher as the distance of two polarons
becomes closer. This means that an interaction between
two polarons is repulsive in the UHF picture. To incorpo-
rate more correlation effects, we superpose the Goldstone
set of the UHF solution. This is called a projected HF
(pHF) approximation. As shown in Fig. 3, the pHF energies
become lower as two polarons get closer. A size-
dependence indicates that the result holds in the thermody-
namic limit. This result suggests that an attractive interac-
tion works between two polarons when we incorporate the
electron correlation effects. To treat the superconducting
state consistently with the normal state, we need a resonat-
ing HFB method [22]. Precise description on the super-
conducting state will be done in the near future.

Next, we show the structures of two typical S dets for
Ne ¼ 92 in Fig. 4. S det in Fig. 4(1) shows a clear stripe,
while that in Fig. 4(2) has deviation from the uniform
stripe. We have obtained these fluctuating stripe structures
for Ne ¼ 92 to Ne ¼ 88. In Fig. 4(i), we show a typical S
det for N ¼ 16� 16 and Ne ¼ 224 (12.5% doping). We
can see the fluctuating stripe structures also in this larger
system. The stripe structure was first pointed out by
Tranquada et al. [23], and studied by many authors

[24,25]. The present result is consistent with these previous
works. For example, as seen from Fig. 4(i)(b), the phase of
the SDW converts at the stripe. On the other hand, the Res-
HF wave functions do not show a static stripe, but they
show QF’s due to deviations from the uniform stripe. These
fluctuations would correspond to the dynamical stripe
structures. A static stripe would be stabilized by other extra
factors, such as an impurity [26] or electron-phonon
coupling.
In summary, we have visualized a variety of the QF’s in

the 2D Hubbard model. In the half-filled system, QF’s due
to S� �S pairs are dominant, while QF’s due to polarons
become dominant in the lightly doped system. The inter-
action between two polarons becomes attractive. This at-
tractive interaction comes from the electron correlation

FIG. 2 (color). Structures of three typical S dets generating the Res-HF wave function for N ¼ 100 and Ne ¼ 96. Scales of SD,
ASD, and NSD are the same as in Fig. 1. The maximum value of the SD and ASD in this figure is 0.906 while that of NSD is 0.626. CD,
ACD and NCD are commonly scaled, and their maximum value is 0.524. The total energy is �54:7.

FIG. 3. Distance (d) dependence of energies of two-polaron
states for Ne ¼ N � 2 (N ¼ 100, 256, and 400). The energies
are measured from the pHF states at d ¼ ffiffiffiffiffiffi
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effects, or resonance of the Goldstone set for the two-
polaron state. Then, the stripe structure appears at about
10% hole doping with the QF’s due to deviation from the
uniform stripe. Although some extra factors, such as an
electron-phonon interaction [27] or an interplane coupling
[28], might be necessary to understand the copper-oxides
precisely, the present direct description of the QF’s would
give a new light on the strongly correlated electron systems
and high-TC superconductivity.
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FIG. 4 (color). Structures of two typi-
cal S dets generating the Res-HF wave
function for N ¼ 100 and Ne ¼ 92 [(1)
and (2)]. The total energy is �59:6. A S
det for N ¼ 16� 16 and Ne ¼ 224 is
shown in (i). Both the NSD and NCD
are induced along the vertical line where
the ASD is suppressed. To save space,
we omit the CD and ACD. The ACD
component is small. Scale of each com-
ponent is the same as in Fig. 2. The
maximum value of SD and ASD is
0.936 while that of NSD is 0.490. The
maximum value of NCD is 0.412.
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