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We investigate the collision dynamics of two non-Abelian vortices and find that, unlike Abelian
vortices, they neither reconnect themselves nor pass through each other, but create a rung between them in
a topologically stable manner. Our predictions are verified using the model of the cyclic phase of a spin-2

spinor Bose-Einstein condensate.

DOI: 10.1103/PhysRevLett.103.115301

Quantized vortices are topological defects in the super-
fluid order parameter, and their character depends on the
topology of the order-parameter manifold of the system. In
the case of single component Bose-Einstein condensates
(BECs), for example, the order-parameter manifold is U(1)
and the quantized vortices are characterized by an additive
group of integers. However, the situation is dramatically
different for spinor BECs, where some phases accommo-
date non-Abelian vortices where the collision dynamics
shows markedly different behavior from that of Abelian
vortices. In this Letter, we investigate the collisional prop-
erties of non-Abelian vortices and their unique topological
properties. In particular, we find that a rung vortex that
bridges the colliding vortices is always formed upon col-
lision, regardless of the ranges of the kinematic parame-
ters. We verify these ideas with numerical simulations for a
spin-2 BEC.

The topological charge of a vortex can be identified by
studying how the order parameter changes along a closed
path encircling the vortex. For U(1) vortices, the U(1)
phase changes around the vortex by an integer multiple
of 271, and the topological charge is expressed by integers.
In spinor BECs, on the other hand, the change of the order
parameter around the vortex involves not only the U(1)
phase but also an SO(3) rotation of the spin. Therefore,
there are phases in which topological charges of vortices
do not commute with each other and form a non-Abelian
group. We define such vortices with noncommutative to-
pological charges as non-Abelian vortices [1].

A salient feature of non-Abelian vortices manifests itself
in the collision dynamics. In Abelian vortices, the follow-
ing three types of collisions are possible: reconnection,
passing through, and a formation of a rung vortex that
bridges the colliding vortices. The reconnection of
Abelian U(1) vortices has been studied theoretically [2],
and observed recently in superfluid “He [3]. Moreover,
there are some theoretical works which predict the rung
structure that connects two attracting U(1) vortices [4] or
U(1) X U(1) vortices [5].

When the vortices are non-Abelian, the situation
changes dramatically. It was predicted that the collision
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of two non-Abelian vortices produces a tangled and con-
nected rung vortex [6]. In fact, for the case of two vortices
with noncommutative topological charges, reconnection
and passing through are topologically forbidden and only
the formation of a rung vortex is allowed. This can be
understood by considering algebraic and geometric struc-
tures of the vortices as shown in Fig. 1. Let us consider two
colliding vortices with topological charges A and B as
illustrated in Fig. 1(a). The topological charge of a vortex
can be determined from a change of the order parameter
along a closed path that encircles the vortex. We consider
two colliding vortices and four paths a, b, ¢, and d, as

base point (a)

B £
4 - \ABA ]
© )
B 1
—i> B\~ J o
-1 4-1
y A - ABAB-A
(©
B B14B
A \9-\,43,4 |
4 (g)
ABA- '
BAB14-1
(B ABAB-14-1

FIG. 1 (color). (a) Four closed paths for two colliding vortices,
where A and B denote the corresponding topological charges.
(b) Path homotopic to path d in (a), and topological charges of
vortices. (c¢) Y-shaped junction. (d) Linked vortices. (e)—
(g) Collision patterns from two vortices starting from the con-
figuration in (a). (e) Passing through. (f) Rung AB between two
vortices. (g) Rung BA~! between two vortices. (h) Collision of
linked vortices and rung BAB~'A™L.
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shown in Fig. 1(a), and assume that paths @ and b define the
topological charges of the vortices as A and B, respectively.
When the base point is fixed, paths a and ¢ are topologi-
cally equivalent. On the other hand, path d is topologically
different from path b, but it can be continuously deformed
to the path shown in Fig. 1(b). As a result, path d defines
the topological charge as ABA™!. When the charges A and
B are noncommutative for non-Abelian vortices, paths b
and d give different topological charges for the same
vortex. Similarly, we can define the topological charges
of vortices for a Y-shaped junction and for linked vortices
as shown in Figs. 1(c) and 1(d), respectively. Upon the
collision of two vortices [Fig. 1(b)], three possible con-
sequences [Figs. 1(e)—1(g)] follow, where Fig. 1(e) shows
“passing through,” and Figs. 1(f) and 1(g) show formation
of “rungs” that bridge the two vortices. When A and B are
commutative, all three cases are topologically allowed.
If A and B are the same topological charge, in particular,
Fig. 1(g) reduces to reconnection because the rung van-
ishes identically (BA~! = 1). When A and B are noncom-
mutative for non-Abelian vortices, however, the transition
from Figs. 1(b)-1(e) is topologically forbidden because
they are topologically distinct. Therefore, a rung with the
topological charge of AB or BA~! must be formed after the
collision, regardless of the kinematic parameters such as
the collision angles and the initial relative speed. From the
viewpoint of the stability of rung formation, this presents a
great contrast to that of Abelian vortices, because in the
case of Abelian vortices, the formation of a rung is usually
energetically unfavorable and occurs only in specific situ-
ations such as the collision of attractive vortices as in type-I
superconductors [4], and whether a rung is formed or not is
strongly dependent on the kinematic parameters of the
collision [4,5]. The other important property of non-
Abelian vortices arises from the collision of linked vortices
as shown in Figs. 1(d) and 1(h). The rung formed from the
linked vortices shown in Fig. 1(h) arises from the genuine
non-Abelian character because the rung BAB~'A™! always
vanishes for Abelian vortices. Therefore, linked vortices
with commutative topological charges can unravel,
whereas linked non-Abelian vortices with noncommutative
ones cannot.

The novel feature of the collision dynamics has been
theoretically investigated in several systems such as a net-
work of cosmic strings in the Universe and disclinations in
biaxial nematic liquid crystals. In the context of cosmic
strings, collisions of vortices also play an important role,
because it determines the number density of cosmic strings
in the Universe. Abelian cosmic strings can reconnect [7,8]
and decrease their number by themselves [7], consistent
with the current measurements of the cosmic microwave
background [9]. In non-Abelian cosmic strings, on the
other hand, reconnection does not occur, but robust rungs
are formed which develop into a junction or a network
structure [10,11]. Similar properties of non-Abelian vorti-

ces have been studied for disclinations in biaxial nematic
liquid crystals [12,13], the topological charge of which is
expected to belong to the non-Abelian quaternion group
Qg. It has been reported [13] that there is a qualitative
difference in coarsening dynamics between Abelian and
non-Abelian disclinations, and the latter dynamics is
slower than the former due to formations of rungs among
disclinations.

In this Letter, we propose a spinor BEC as an ideal
system to study non-Abelian vortices and their dynamics.
The major advantages of this system are that the micro-
scopic Hamiltonian is known and that the dynamics of the
system can be investigated in real time. Below we demon-
strate that non-Abelian vortices appear in the cyclic phase
of a spin-2 spinor BEC and show that the collision dynam-
ics obeys the aforementioned algebraic rules. Recently,
spin-2 BECs have been investigated in F = 2 8’Rb atoms
[14] and various features have been predicted [15-22].
Although the ground-state phase of an F = 2 8’Rb BEC
is widely believed to be antiferromagnetic, the possibility
of the cyclic phase has not yet been excluded due to
complications arising from quadratic Zeeman effects and
hyperfine-spin-exchanging relaxations [23]. Topological
charges of vortices in the cyclic phase of the spin-2 BEC
are expressed by the discrete tetrahedral non-Abelian
group [17,21]. We will show below that the stable rung
can be formed resulting from the algebra shown in Fig. 1.

We start with a BEC of spin-2 atoms with mass M whose
energy functional is given by [15,16]

2 . h2 Co
H = [d3r|: Z_ \I,:n<_ﬁv2)qu +?nt20t
m=-2
Cq 2 CH 2]

+—|F|* +—=|A A 1
> |F| > | Aol (1)
where W, is the order parameter of the BEC in a magnetic
sublevel m =0, =1, =2 at position r, and ny =
3,1:_2 |\Irm|2, F = Zi‘m,:_z ‘Iff,,Fm’m/‘Pm/, and AOO ==
QW,V_, —2W,W_, + ¥2)/./5 are the total number den-
sity, the spin vector density, and the spin-singlet pair am-
plitude, respectively. Here F,,,  is a vector of spin-2
matrices. The ground state of the cyclic phase is realized
for ¢; > 0 and ¢, > 0, where both F and A, vanish. One
representative state for the cyclic phase is given by

\I}cyclic = \/ntot(i/z’ 0, 1/\/5’ 0, 1/2)T
Through the U(1) gauge transformation and the SO(3)
spin rotation, it is possible to transform from one to another
cyclic state as W ;. = e/Pe”F@0W ., where ¢ is the
U(1) gauge, and @ and 6 are the unit vector of the rota-
tional axis and angle of the spin rotation, respectively. In
the cyclic phase, W.y.ji. is invariant under the following 12

transformations: 1, I, = "7 [, = 57 I = 'F:7, C=
e277i/3€_—277i(FX+F}.+FZ)/3\/§’ C2, IXC, IyC, IZC, Ixc2, chZ,
and IZC2 [21]. The overbar is added to emphasize that the
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operation includes not only a rotation in spin space but also
a gauge transformation. These 12 transformations form the
non-Abelian tetrahedral group 7.

Topological charges of vortices can be classified by 12
elements of the non-Abelian group 7. We represent these
topological charges as 1, I, I, .... Vortices are also
classified into four conjugacy classes: (I) integer vortex;
1, (ID) 1/2-spin vortex; I, I,, and I, (II) 1/3 vortex; C,
1,C, I,C,and I.C, and (IV) 2/3 vortex; C?, I,C?, I,C?, and
1,C?. Topological charges in the same conjugacy class
transform into one another under the global gauge trans-
formation and the spin rotation. The order parameters for
straight vortices along the z axis in each conjugacy class
can be written in cylindrical coordinates (r, ¢, 7) as

1 A
V= EVntot(r)e’”””S

(l'eri(nz-%—l)ga’ 0, \/Eh, 0, ife—Zi(n2+1)q:)T
(ifei(2n2+l)<p, 0, \/Eh, 0, ife—i(2n2+l)<p)T
X 725(fei(2112+l)<p, 0,0, \/Egefinzgo’ O)T )

%(fei(2n2—l)<p, 0,0, \/_z'ge—inzgp’ O)T

for (1), (IT), (II1), and (IV), respectively, where the vortex is
placed at r = 0. Here, n; and n, are the integer winding
numbers, f = f(r), g = g(r), and h = h(r) are real func-
tions  that  satisfy  [f(r)? + h(r)?]/2 = [f(r)* +
2¢(r)’]/3=1 and  f(r— o) = g(r— o) = h(r —
) =1; 8 represents the arbitrary global gauge transfor-
mation and global spin rotation. At the vortex core, the

e ® ) (1) ¢ LC
C

FIG. 2 (color). Collision dynamics of two non-Abelian vorti-
ces [27]. (a)—(c) Formation of an F # 0 rung from two straight
vortices. (d)—(f) Formation of an Ay # O rung from two straight
vortices. (g)—(i) Formation of an Ay, # O rung from two linked
vortices. In all the figures, the isosurfaces of magnetization |F|?
and the singlet-pair amplitude |Ay|? are shown for vortex cores
with |F|> # 0 and |Ag|? # 0, respectively [see Eq. (2) and the
following sentences]. The topological charge of each vortex is
also indicated.

cyclic order parameter changes to that of a different phase.
With the minimum windings (n; = n, = 0), we obtain the
core structure of each conjugacy class by taking f(r =
0) =0 as (DA ¥ = $(0,0,1,0,0)" and (I)IV) W =
$(0,0,0,1,0)7; i.e., the core of (I) and (II) vortices have
a finite spin-singlet pair amplitude (Ay, # 0), and that of
(IIT) and (IV) vortices have a finite magnetization (F # 0)
[24].

When there is more than one vortex in the system, each
topological charge cannot independently transform into
one another under the global gauge transformation and
the global spin rotation. Therefore, the relative relationship
of their topological charges (commutative or noncommu-
tative, in particular) becomes important and their collision
dynamics becomes nontrivial. To investigate the detailed
dynamics of vortex collisions, we numerically solve the
nonlinear Schroédinger equation [18,19] derived from
Eq. (1) in a uniform box subject to the Neumann boundary
condition, starting from the two types of initial conditions
as shown in Fig. 2: (I) two straight vortices at an oblique
angle [Figs. 2(a) and 2(d)] and (II) two linked vortices
[Fig. 2(g)]. We take ¢; = ¢, = 0.5¢, for which the cyclic
phase and non-Abelian vortices discussed above can exist
stably. In the present simulation, we perform the collision
of vortices with F # 0 cores and topological charges
shown in Figs. 2(a), 2(d), and 2(g). After the collision,
two vortices get connected and a rung appears between the
two vortices. Depending on the initial topological charges
of the vortices, we obtain rungs with F' # 0 core [Fig. 2(c)]
or Agg # 0 core [Figs. 2(f) and 2(i)]. For the collisions of
straight vortices, topological charges of rungs in Figs. 2(c)
and 2(f) obey the algebras shown in Fig. 1(g), namely,
C(I,CH™' =1,C* and C(I,C)"" = I, respectively. We
have performed numerical simulations with various com-
binations of topological charges, relative velocities, and
collision angles, and confirmed that passing through and
reconnection occur only when the topological charges of
the two vortices are commutative, and that the formation of
a rung always occurs, when the topological charges of the
two vortices are noncommutative. For the linked vortices
shown in Fig. 2(g), we can expect the formation of a rung
as shown in Fig. 1(h). The formed rung in Fig. 2(i) satisfies
expected algebra: 1,C C(1,C)~'(C)~! = I,. We also have
checked that unraveling of two linked vortices never hap-
pens for noncommutative topological charges.

We finally describe a possible experimental manifesta-
tion of rungs. The phase-contrast imaging experiment [25]
enables the measurement of local magnetization, and vor-
tices with F' # 0 cores appear as localized magnetization
lines. For example, rungs with F # 0 cores like Fig. 2(c)
manifest themselves as bridged structures of localized
magnetization.

In conclusion, we have algebraically studied the colli-
sion dynamics of non-Abelian vortices. After the collision,
two non-Abelian vortices with noncommutative topologi-
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cal charges neither reconnect themselves nor pass through
each other, but always create a rung between them. We also
have substantiated our theory by carrying out numerical
simulations for vortices classified by the discrete tetrahe-
dral non-Abelian group in the cyclic phase of a spin-2
spinor BEC. We expect that the results of our study may
find applications in other non-Abelian systems such as
cosmic strings, biaxial nematic liquid crystals, and super-
conductors with high internal degrees of freedom. In par-
ticular, in quantum turbulence, where the key process is the
reconnection of quantized vortices [26], we expect that a
dramatic change should occur with non-Abelian vortices,
as reported in other systems [10,13], and that the non-
Abelian properties found in this Letter will open up a
new research field of non-Abelian quantum turbulence.
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