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We investigate the collective motion of a two-dimensional disordered ensemble of droplets in a

microfluidic channel far from equilibrium and at Reynolds number �10�4. The ensemble carries

ultraslow shock waves and sound, propagating at �100 �ms�1 and superposed on diffusive droplets

motion. These modes are induced by long-range hydrodynamic dipolar interactions between droplets, the

result of the symmetry breaking flow. The modes obey the Burgers equation due to a local coupling

between droplets velocity and number density. This stems from a singular effect of the channel sidewall

boundaries upon summation of the hydrodynamic interaction in two dimensions.

DOI: 10.1103/PhysRevLett.103.114502 PACS numbers: 47.61.�k, 47.55.D�

Nonequilibrium, dissipative many-body systems with
long-range interactions exhibit complex collective dynam-
ics, for example, elastic turbulence [1], non-Brownian
sedimentation [2], and dusty plasma crystals [3]. The
general description of such systems remains an open theo-
retical challenge [4]. Also in this class are microfluidic
droplet ensembles [5–10], which exhibit complex dynam-
ics due to hydrodynamic interactions. Yet these ensembles
operate in a linear, low Reynolds number flow regime
(Re� 10�4), and are hence accessible both experimentally
and theoretically. The simplest microfluidic ensemble is
the one-dimensional (1D) microfluidic crystal—an ordered
array of droplets, which exhibits unique acoustic modes,
akin to solid state phonons, as well as nonlinear instabil-
ities and anomalies related to boundaries [8,9]. These
modes arise from hydrodynamic dipolar interactions be-
tween droplets that are induced by the symmetry breaking
flow field. Theoretically, the phonons are entirely tractable
due to the 1D crystalline order and the small fluctuations of
droplets motion. In contrast, the many-body problem is far
more complex when dealing with the dynamics of a 2D dis-
ordered ensemble, in which individual droplets move er-
ratically, with large amplitude fluctuations and dynamic
clustering.

In this Letter, we investigate the collective modes of
such 2D disordered microfluidic droplet ensembles.
Analyzing the fluctuations of droplet number density along
the flow, we observe new collective modes—ultraslow
shock waves and sound propagating at �100 �ms�1,
despite the heavy dissipation. These waves are superposed
on the complex motion of individual droplets. Surprisingly,
we find that the waves obey the 1D Burgers equation [11]
as a direct result of a local linear coupling between droplet
number density and their velocity. We show theoretically
that this coupling arises from summation over the two-
body dipolar interaction under a mean-field approximation.
This is a singular consequence of the channel sidewall
boundaries, which is a marginal case of the known diver-
gence of long-range interactions in 3D [2,12]. The re-

nowned Burgers equation was introduced in the 1930s as
a simplified version of the Navier-Stokes equation [11] and
has been used to study diverse nonequilibrium, nonlinear
phenomena in turbulence [13], cosmology [14], and inter-
face dynamics [15]. To the best of our knowledge, despite
the extensive theoretical work on this equation, there is a
lack of relevant experimental systems besides second
sound in liquid helium [16,17] and dusty plasma [18].
The 2D disordered droplet ensemble is, therefore, a new
tabletop experiment for studying Burgers dynamics.
To investigate the dynamics of a two-dimensional en-

semble of droplets we built a microfluidic droplet genera-
tor [5,8,9]. Water droplets formed at a T junction between
water and oil channels under continuous flow, emanating at
a constant rate with uniform radii R ¼ 6–15 �m (Fig. 1).
The T junction, 25 �m in width, was connected to a wider
channel of width W ¼ 500 �m or 800 �m, where the
droplets formed a 2D disordered ensemble flowing at a
mean velocity ud ’ 100 �ms�1 (Fig. 1; movie 1 [19]).
The channel height was h ¼ 10 �m< 2R; hence, the
droplets had a disklike shape, squeezed between the chan-
nel floor and ceiling. These boundaries imposed friction

FIG. 1 (color online). Disordered 2D ensemble of microfluidic
water-in-oil droplets. (top) Droplets flowing in a 500 �m width
channel, �0 ¼ 0:23. Red vectors show droplet velocities relative
to ud. Distilled water and light mineral oil with 2% Span-80
surfactant (w=w) were used. Scale bar is 100 �m. (bottom) The
corresponding 1D density profile �ðx; tÞ.
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that slowed the droplets relative to the mean velocity of the
dragging oil [8], u1oil ’ 400 �ms�1. The Reynolds number

of the system was estimated as Re ¼ uoil�oilh=�oil �
10�4, where �oil ¼ 800 kg=m3 and �oil ¼ 30 mPa s are
oil density and viscosity. The mean area fraction of the
droplets, �0, was controlled by adjusting the gas pressure at
the water and oil inlets, and varied between 0.06 and 0.60.
Using a motorized microscope stage moving in frame at
ud, we followed up to 2000 droplets for �100 s and
extracted their trajectories (movie 2 [19]).

Droplets density was nonuniform on many length scales,
and individual droplets exhibited random motion due to
interparticle interactions and dynamic clustering [Fig. 2(a),
Fig. s1 [19] ] [20]. At short time scales, t < 0:5s, droplets

motion was ballistic over distances of �R, and at longer
time scales droplets exhibited diffusion and superdiffusion:
Perpendicular to the flow, droplet trajectories were diffu-
sive (�y2 ¼ Dyt, Dy � 300 �m2 s�1) with a symmetric

velocity distribution, while along the flow their trajectories
were superdiffusive (�x / t�, � � 1:4) with an asymmet-
ric velocity distribution, reflecting the broken symmetry of
the system [Figs. 2(a) and 2(b)].
To simplify these complex dynamics, we reduced the 2D

density field to a 1D density profile �ðx; tÞ along the flow
(Fig. 1). This was done by measuring the local area fraction
in discrete narrow slices perpendicular to the flow with
length �x of a few droplet radii and width �y ¼ W. The
mean velocity of droplets within a slice, uðx; tÞ, increased
linearly with slice density [Fig. 2(c)]: uðx; tÞ ¼
u0 þ ��ðx; tÞ, where u0 � 100 �ms�1 is the velocity of
an isolated droplet and �� 100–150 �ms�1 is the cou-
pling constant between local droplets velocity and their
number density. In our experiments �� 1:7c0 for �0 <
0:3, approaching �� c0 for �0 � 0:6, where c0 ¼
ðud=u1oilÞðu1oil � udÞ is the natural velocity scale in the

system [8]. The space-time diagram of �ðx; tÞ revealed
large-scale fluctuations, hundreds of microns long, prop-
agating along the flow, as measured in the frame of refer-
ence moving at ud [Fig. 2(d)]. From the power spectrum of
�ðx; tÞ we obtained a linear dispersion relation !ðkÞ ¼ csk
between frequency ! and wave vector k [Fig. 2(e)], with a
sound velocity of cs ¼ 10–100 �ms�1 and frequencies of
less than 0.5 Hz. The sound velocity scales with density,
cs � 2c0�0, and is independent of W [Fig. 2(f)].
To examine the dynamics of large density fluctuations

we generated a short pulse of 200–300 droplets and fol-
lowed their motion [Figs. 3(a) and 3(b), movies 3 and 4
[19] ]. Markedly, the droplets self-organized into a shock
wave structure with a discontinuous density jump at the
front, and a rarefaction at the rear that increased with time.
The front line was perpendicular to the flow and its density
decreased in time. Propagating at ushock ¼ 145 �ms�1,
the shock wave kept its asymmetric shape although indi-
vidual droplets changed their relative position within the
pack and despite their diffusive motion. Traces of shock
waves were found also in experiments with continuous
droplet formation as dense, small-scale fronts �100 �m
long in the x direction. The fronts formed spon-
taneously, propagating for 1� 2s before spreading out
[Figs. 3(c)–3(e)]. They were not a mere advection of
matter, since they propagated into lower density regions
by engulfing the droplets ahead. As shock waves, these
fronts were ‘‘supersonic’’: they propagated faster than the
estimated speed of sound in the medium ahead: ufront >
2c0�R, where �R is the droplet density ahead of the front.
Theory.—Droplets conservation implies @t�þ

@xðu�Þ ¼ D½�� with u� the advective flux and D a diffu-
sion operator. Substituting the velocity-density coupling,
neglecting small fluctuations �u=u� 10% [Fig. 2(c)], and
transferring into a moving frame, x0 � ðx� u0tÞ=2�, we
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FIG. 2 (color online). (a) Mean square displacement over time
along x (red circles) and y (blue squares) vs time for �0 ¼ 0:10.
Zero slope corresponds to diffusion. Inset: a typical trajectory.
Scale bar is 50 �m. (b) Droplet velocity distributions: ux (red
circles) and uy (blue squares). (c) Mean ux in 2R slices vs slice

density for �0 ¼ 0:23 (dots) with standard deviation bars and
linear fit with slope � ¼ 150 �ms�1 (solid line). (d) Space-time
diagram of �ðx; tÞ for �0 ¼ 0:23. Color encodes for local density.
(e) The power spectrum of �ðx; tÞ shown in (d) in units of
ð�msÞ�2. (f) Normalized sound velocity vs mean density �0

forW ¼ 500 �m (red circles) andW ¼ 800 �m (blue squares).
A numerical simulation of the droplet ensemble (Fig. s5 [19])
gave similar results to (a–f).
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obtain the 1D Burgers equation:

@t�þ �@x0� ¼ D½��: (1)

For superdiffusion, we use D½�� ¼ ðD0=4�
2Þ@x0x0�2=�þ1

[21] with D0 � 75 �m2 s�1 and � ¼ 1:4 (for other for-
mulations see [22,23]). However, droplet superdiffusion
can be neglected compared to the advection term since

D0=½ð2�Þ2�x0� � 0:01. The solutions of the Burgers equa-
tion are shock waves with a sharp front and rarefaction at
the rear [11,13] as seen experimentally (Fig. 3, Fig. s2
[19]). The velocity of a Burgers shock is obtained from
mass conservation across its front and depends on the mean
density at both its sides: ushock ¼ u0 þ �ð�L þ �RÞ. The
typical width of the front is OðD0=���Þ � 1 �m, where
�� is its amplitude [11]. Indeed, the shock in Fig. 3(a) had
u0 � 100 �ms�1, � � 150 �ms�1, �L � 0:4–0:5, and
�R ¼ 0, which implies ushock ¼ 160–175 �ms�1. The
front width is narrow, which corroborates that diffusion is
negligible. The shock is supersonic as it is faster than the
speed of sound in the medium ahead, cs � u0. A numeric
solution of the Burgers equation with the experimental
parameters and initial condition is in good agreement
with the measured density profile [Fig. 3(b) and movie 4
[19] ]. Additionally, a numeric simulation of the 2D drop-
lets ensemble shows similar dynamics (supplementary ma-
terial and movies 5 and 6 [19]). The prediction for ushock
applies also for the velocity of the shocklike fronts
[Fig. 3(e)]. Furthermore, their fast decay (1� 2s) relative
to the isolated shock [Fig. 3(a)] is consistent with the
Burgers equation, in which narrow structures typically
decay faster (Fig. s2 [19]). The Burgers equation also
explains sound in the system, as infinitesimal shocks with
�L � �R � �0. Ignoring diffusion and expanding (1) to
small density fluctuations �ðx; tÞ ¼ �0 þ ��ðx; tÞ with
�� � �0 yields a first-order wave equation: ð@t þ
��0@xÞ�� ¼ 0 with traveling-wave solutions that propa-
gate forward at cs ¼ ��0 in the frame moving at ud ¼
u0 þ ��0, as in the experiment [Fig. 2(f)].
Our Burgers theory is based only on droplet conserva-

tion and the measured linear velocity-density coupling. To
explain the coupling � in terms of the hydrodynamic
interactions between the droplets, we use a mean-field
approximation to calculate the velocity change, �ux, of a
test droplet due to its interactions with a uniformly distrib-
uted ensemble of droplets of area fraction �0.
In the low Reynolds regime, where inertia is negligible,

droplet motion is governed by drag and friction forces only.
The drag force is given by Fdrag ¼ �d½uoilðrÞ � ud� with
drag coefficient �d ¼ 8��R2=h and uoilðrÞ the velocity of
oil at the droplet’s position, which includes perturbation of
other droplets. Friction force stems from energy dissipation
due to a treadmill flow inside the droplet and is propor-
tional to its velocity Ff ¼ �ud with friction coefficient

� � 0:03 g s�1. Balancing drag and friction we obtain the
equation of motion of the nth droplet: _rn ¼ ð1þ
�=�dÞ�1uoilðrnÞ, in which we can calibrate the constant
ð1þ�=�dÞ�1 ¼ ðu0=u1oilÞ for an isolated droplet [8].

The motion of each droplet perturbs the flow of
oil around it, which mediates a hydrodynamic interaction
between the droplets. The flow is well approximated by
a 2D potential flow with potential 	, such that r	 is
the velocity field induced by the droplet [8,24–26],
and the drag force between two droplets is given by

FIG. 3 (color online). Shock waves. (a) shock wave evolution
in time shown at 6s intervals in the frame of the channel (solid
lines) and (b) the corresponding density profiles �ðx; tÞ for each
snapshot (bars). The black line shows the solution of the Burgers
equation for the experimental initial condition with c0 ¼
150 �ms�1 and u0 ¼ 100 �ms�1. Scale bars are 100 �m.
(c–d) A shocklike front in a continuous experiment and its
�ðx; tÞ. (c) The front is marked by a dashed line, and the droplets
on its left side are gray (red). (d) After 2:1s the front line moved,
engulfing new droplets. (e) Normalized front velocity for differ-
ent �0 vs the sum of the densities at the two sides of the front.
Dashed lines have slope of 1 and 2.
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Fdrag ¼ �dr	ðrn; riÞ. Without sidewalls the potential is

that of a 2D dipole, but when sidewalls are introduced, it
is distorted and screened as expð�2�x=WÞ, with an ex-
plicit y dependence due to the breaking of translational
invariance [9]. The confined flow potential is calculated
using the method of electrostatic image charges by intro-
ducing an infinite array of image dipoles along y [9,27].
Hence, in the equation of motion of the nth droplet we have
uoilðrnÞ ¼ u1oilx̂þ

P
i�nr	ðrn; riÞ.

Under the mean-field approximation we show that the
source of the velocity-density coupling is the sidewall
boundaries. If there were no sidewalls, we would obtain
that the uniform droplets distribution, which spans the en-
tire xy plane, induces �ux ¼ 0 on the test droplet. This
stems from the symmetry of the unconfined dipole and can
be seen, for example, by dividing the droplets in the
uniform distribution into pairs, whose velocity contri-
butions to uoilðrnÞ cancel out [Fig. 4(a)]. Under confine-
ment, however, each of these pairs induces a positive net
contribution to uoilðrnÞ due to screening; hence �ux > 0
[Fig. 4(b)]. To calculate �ux, we integrate the velocity
contributions of the droplets in a slab around the test
droplet �ux ¼ ðu0=u1oilÞ

R
@x	ðr; r0Þd2r0, which can be

converted into a contour integral using the Stokes theorem
ðu0=u1oilÞ

H
	ŷ � dl (Fig. s3 [19]). To first order in R=W �

1 we obtain a linear coupling between velocity and density
with � ¼ c0, identical to the experiment within a factor of
1 to 2 [Figs. 2(f) and 3(e)]. This result is independent of the
test droplet’s y coordinate as well as the slab length, and
hence applies locally and depends only on the density in a
4R slab around the droplet. The coupling is independent of
W, which is peculiar since in the absence of sidewalls
�ux ¼ 0. The velocity-density coupling is, therefore, a
singular consequence of the confining boundaries; namely,
it vanishes without boundaries but is independent of their
separation.

The 1D description captures the collective modes of the
system—density and shock waves—although it ignores
many degrees of freedom that arise from its 2D, discrete
nature, such as transversal velocity [Figs. 1 and 2(b)].
These ‘‘hidden variables’’ are reflected, for example, in
the measured variance of the linear velocity-density cou-
pling [Fig. 2(c)]. We verified that nonuniformities perpen-

dicular to the flow do not waive the effective description by
the 1D Burgers equation (Fig. s4 [19]). Finally we per-
formed a numerical simulation of the 2D experiment,
solving the equations of motion of up to 1000 droplets
with periodic boundary conditions along x, which repro-
duced the experimental dynamics (Fig. s5 [19]). Operating
in a linear flow regime, microfluidic droplet ensembles are
a tabletop experiment that opens a vista into the nonequi-
librium physics of many-body systems with long-range
interactions, as well as Burgers dynamics and turbulence.
We wish to thank Assaf Avidan, Etam Benger, Haim

Diamant, Gregory Falkovich, Elisha Moses, and Victor
Steinberg.
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W

FIG. 4 (color online). The dipolar drag forces of two droplets
acting on a test droplet (pale gray). Without sidewalls (a),
longitudinal drag forces cancel out. Under confinement (b)
droplet fields are screened, leading to a net drag force along x.
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