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Sound generation and interaction are highly complex, nonlinear, and self-organized. Nearly 150 years

ago Rayleigh raised the following problem: two nearby organ pipes of different fundamental frequencies

sound together almost inaudibly with identical pitch. This effect is now understood qualitatively by

modern synchronization theory M. Abel et al. [J. Acoust. Soc. Am. 119, 2467 (2006)]. For a detailed

investigation, we substituted one pipe by an electric speaker. We observe that even minute driving signals

force the pipe to synchronization, thus yielding three decades of synchronization—the largest range ever

measured to our knowledge. Furthermore, a mutual silencing of the pipe is found, which can be explained

by self-organized oscillations, of use for novel methods of noise abatement. Finally, we develop a

reconstruction method which yields a perfect quantitative match of experiment and theory.
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Introduction.—In a seminal publication Lord Rayleigh
reported on experiments involving two organ pipes of close
pitch, positioned next to each other. He observed the
following peculiar behavior: alone, each pipe sounded
with its own frequency; together they sounded in perfect
unison and almost reduced one another to silence [1,2].
This phenomenon can be described by synchronization
theory, a general nonlinear principle with striking applica-
tions in the natural sciences including physics, chemistry,
neurology or biology [3].

Here, we focus on an organ pipe as (i) prototypical for
aeroacoustical sound generation, (ii) paradigmatic for syn-
chronization of coupled oscillators, and (iii) a beautiful
musical instrument for which we present a mathematical
model. By driving one organ pipe sinusoidally by an
electric speaker we can demonstrate in great detail the
importance of nonlinear effects in sound generation and
interaction [4] in contrast to linear response theory [5]
conventionally applied for musical instruments.

The general description of the dynamics of an organ pipe
is given by the compressible Navier-Stokes equations with
suitable boundary conditions. One can solve the equations
numerically [6], or investigate them analytically [7]. Both
ways reproduce different aspects of sound production.
Here, we are interested in the interaction of an organ
pipe with a sound source. Then, it is advantageous to model
only the relevant characteristics in terms of reduced models
[8]. Such an elementary model allowing for complex dy-
namics is given by an autonomous oscillator [3,9], which
includes an oscillatory unit, energy supply, and energy loss
by radiation and damping.

Let us identify these units in the organ pipe. Energy is
supplied steadily by the wind system through the pipe foot
and establishes a turbulent vortex street. Each time a vortex
detaches, a pressure fluctuation enters the resonator, inside
which characteristic waves are selected, and radiated at the
pipe mouth by an oscillating air sheet [8,10]. In our model,
this air sheet constitutes the basic oscillating unit. Inside

the resonator sound pressure levels (SPLs) up to 160 dB
can occur, such that viscous damping contributes in energy
dissipation. External acoustical fields couple to the system
through the air sheet, possibly described by a (nonlinear)
acoustical admittance [11]. By Lighthills analogy [7], a
coupling by the turbulent vortex street is expected to be of
lower order.
The above scenario can be described by a reduced, two-

dimensional model for the oscillatory unit �:

€�� gð�; _�Þ ¼ 0; (1)

where the function gð�; _�Þ contains the above-mentioned
ingredients and with the condition that a limit-cycle solu-

tion of frequency �0 exists. Then, with � ¼ AðtÞei�ðtÞ the
phase � and the amplitude A are well defined. An external
driving enters on the right-hand side of Eq. (1).
Corresponding to the experiment, sinusoidal driving is
used: " sinð2��tþ�0Þ with " the coupling strength.
Here, one assumes that an oscillator represents the basic
physics of the pipe with regard to sound generation and
synchronization—typically, the oscillating air sheet [8].
Because the air sheet is the source of sound radiation, the
measurement at the microphone can be taken as the state of
the oscillator (with a phase shift accounting for distance).
Close to the limit cycle the amplitude is slaved by the

phase, allowing the description in terms of the phase
difference � between driving and oscillator

_� ¼ �2�ð�� �0Þ þ "qð�Þ: (2)

The parameters are driving frequency �, and coupling ".
The study of the parameter plane (�, ") yields triangular-
shaped synchronization regions, the well-known Arnold
tongues [12].
In order to determine Eq. (1) directly from data, we have

elaborated a numerical method based on embedding theory
[13] which allows for a reconstruction and comparison of
the characteristics of model and data. We recover the
power spectra and synchronization properties of the organ
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as an acoustical system. This opens the way for a detailed
theoretical investigation of the system and hints to how a
model can be derived from first principles.

The experiment.—The setup of the experiment is
sketched in Fig. 1. The pipe [14] was wooden and closed
at the upper end, tuned at �0 ¼ 686 Hz. It was driven by an
especially fabricated miniature organ [14] with a blower
connected to the wind belt and further by flexible tubes to
the wind chest. Measurements took place inside a suitable
anechoic box. The loudspeaker for the external, driving
sound signal was positioned side-by-side to the organ pipe,
cf. Fig. 1. The emitted signals were registered at a distance
of 16 mm to either pipe and speaker, allowing for con-
structive or destructive interference of the superposed sig-
nals. To ensure that the phase of the pipe is correctly
detected, we carried out simultaneous control measure-
ments inside and outside the pipe and at the micro-
phone—all results were consistent.

To explore the coupling-detuning plane (�, "), the loud-
speaker SPL and frequency were varied separately, the first
between þ10 dB and �50 dB relative to the reference
signal of the organ pipe in steps of 2 dB, the latter accord-
ing to the size of the synchronization range. To determine
the minimal achievable resolution in �, we consider the
sources of variations of the pipe’s frequency. The wind
pressure was 700� 9 Pa, giving a frequency variation of
�0:1 Hz at the scale of seconds; the temperature varied
with the circadian rhythm at 292� 1 K with a resulting
variance of ’2 Hz [15]. This slow change did not affect an
individual run with a fixed SPL; however, runs with differ-
ent SPLs were adjusted to the circadian variation. We
measured the synchronization range down to the maximal
resolution of 0.1 Hz as set by the wind supply; below noise
destroys synchronization. With respect to noise, we en-
hanced the signal-to-noise ratio by long-time averaging,
such that irregular phase slips are leveled out and a syn-
chronization region can be obtained even for very small
driving. This was achievable by heavily automatized mea-
surements of a total duration of about 3 weeks.

We investigated two acoustically relevant characteris-
tics: the frequency difference, ��=�0 ¼ ð�speaker �
�pipeÞ=�0, and the spectrum of the measured loudspeaker

signal. Their dependence on the detuning is shown in Fig. 2
for two exemplary relative driving strengths, 0 and 10 dB.
Note, that �pipe is the frequency of the driven pipe which

might be different from its natural frequency.
The transition to synchronization can be seen from the

graph for the frequency difference. For equal SPL and
below (upper panel in Fig. 2), a saddle-node bifurcation
is found, as predicted theoretically [3,16]. For couplings
stronger than 0 dB, the bifurcation tends to become very
sharp, indicating that the weakly nonlinear approximation
[3] breaks down (lower panel Fig. 2).
In the graphs for the amplitude, one recognizes two

effects: synchronization and resonance. Because of syn-
chronization the phase shift between the two emitted
signals varies within an interval of size �; as for
Helmholtz resonance, the loudspeaker signal is
phase shifted by �� and reemitted by the pipe. From
synchronization alone, the superposition of the signals of
speaker and pipe can only vary within SPLspeaker �
SPLpipe; with resonance much weaker amplitudes result,

as seen in Fig. 2. This result implies a novel way of sound
reduction, where the reductor acts as an active element,
adjusting the frequency without any external control.

FIG. 1. Sketch of the experiment. Pipe and loudspeaker stand
side by side, the signal is measured by a microphone with equal
distance to both sound sources.

FIG. 2 (color online). Synchronization plot: if the detuning of
pipe and loudspeaker is small enough, frequency synchroniza-
tion is found as a plateau. Within the synchronization region, the
phase difference � varies over an interval of size �, where the
measured SPL shows a sharp minimum for � ¼ �. Top
(SPLspeaker ¼ SPLpipe): the frequency shows a very nice plateau

with a saddle-node bifurcation; for � ¼ � negative interference
is observed by a decrease of 6 dB. Bottom (SPLspeaker ’
SPLpipe þ 10 dB): the transition from synchronization is quite

sharp, indicating strong nonlinearities. The amplitude decrease
can be explained by synchronization with an additional
Helmholtz-resonator-like behavior of the pipe, deepening the
SPL gap to 15 dB. The maximum is obtained by addition of the
amplitudes to 12 dB.

PRL 103, 114301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 SEPTEMBER 2009

114301-2



The full variation in parameter space is shown in the left
panel of Fig. 3 by an Arnold tongue, here plotted logarith-
mically due to the enormous coupling range investigated.
The color coding corresponds to the spectral power of the
loudspeaker frequency Sð�speakerÞ, measured at the micro-

phone. We varied the amplitude of the loudspeaker from
þ10 dB to �50 dB, relative to the SPL of the organ pipe,
in steps of 2 dB. The range covers 3 decades—the widest
range ever measured in synchronization experiments. The
synchronization edges are marked in Fig. 3 by white lines.
Clearly, the linear shape is bent due to the semilog plotting.

Reconstruction of the dynamical system.—We do not
have access to the ‘‘state’’ of the oscillating air sheet, but
we know the recorded SPL, xðtÞ, of the organ pipe. By
embedding theory we can infer a differential embedding
(x; _x; €x; . . . ) with a maximal embedding dimension of three
[13,17]. In this space there exists an equivalent to Eq. (1):
€x� fðx; _xÞ ¼ 0. We reconstruct this equation step by step
to further investigate its dynamical and predictive
properties.

The data series consists of 110250 data points, with a
sampling rate of 11 025 Hz. Normalization in space and
time yields variance 0.5 and frequency 1. The crucial
computation of derivatives was accomplished by spectral
smoothing [18]: (i) Fourier transformation, (ii) 8th order
Butterworth filtering with cutoff at 4:5�0 to suppress noise
amplification, and (iii) backtransformation. If the cutoff is
increased more harmonics enter the filtered time series; if
the cutoff is too low too much information is filtered out;

i.e., the necessary nonlinearities are suppressed. Thorough
testing yielded that in our case a three-dimensional embed-
ding does not improve the results.
The unknown function f is estimated by nonparametric

regression, formulated as a minimization problem: k €x�
fðx; _xÞk2¼! min , with k�k2 the l2 norm of the data vector.
The unknown function f is found by variation in function
space, where we used, for the sake of computational sim-
plicity, polynomials of order three [19,20]; higher orders
do not improve the model. Specifically, fðx; _xÞ ¼
a0 þ a1xþ a2x

2 þ a3x
3 þ a4 _xþ a5 _x

2 þ a6 _x
3 þ a7x _xþ

a8x
2 _xþ a9x _x

2 with a0 ¼ 0:25, a1 ¼ �0:92, a2 ¼ �0:18,
a3 ¼ �0:12, a4 ¼ 0:20, a5 ¼ �0:33, a6 ¼ 0:056, a7 ¼
�0:015, a8 ¼ �0:923, a9 ¼ �0:072. Note the striking
similarity to the van der Pol oscillator with fvdP ¼ �xþ
_xð1� x2Þ, reflected in the dominant coefficients a1 and a8.
The latter is responsible for nonlinear damping, whereas
energy is supplied by the constant and the _x term. Other
terms assist nonlinear damping and are indispensable to
find the correct frequencies in the reconstructed system.
Since the observables are not directly related to the physi-
cal driving (wind) and damping mechanisms we hesitate to
give a complete physical interpretation.
Numerical stability analysis yields a repelling fixed

point at (0.254,0) and an attracting limit cycle, plotted in
the inset of Fig. 4, which shows convincing coincidence
with the filtered experimental data. For acoustical com-
parison, we compare the power spectra of pipe and recon-
struction in Fig. 4. The positions of the harmonics are in
perfect agreement, and their ratio coincides well.
Finally, the model is synchronized with an external,

sinusoidal driving. For the coupled equation, we solve €x ¼
fðx; _xÞ þ � sinð!tÞ, with the driving frequency ! and the
coupling parameter � ¼ 0:025SPLspeaker. The latter rela-

tion describes the influence of the loudspeaker on the pipe
with a factor 0.025, determined in order to obtain optimal
coincidence of experimental and reconstructed Arnold
tongue, see Fig. 3. Recently, a way to extract the coupling
from data has been proposed [21]; in principle it can be
obtained by a detailed analysis of acoustics and fluid
dynamics at the pipe mouth.
Conclusion.—Since the time of Lord Rayleigh the non-

linear interaction of acoustical sources has been under
discussion [1]. We highlight the acoustical effects of phase
synchronization, experimentally realized by an organ pipe
driven externally by a loudspeaker. The application of
synchronization theory suggests a novel type of sound
control, where the passive element adjusts its frequency
exactly to the source. Since the system involved can be
abstracted, we conclude that such a control can be applied
to a diversity of situations, from musical instruments to
noise reduction in vibrating systems, be it mechanical or
hydromechanical.
With respect to synchronization, we found the deepest

Arnold tongue ever seen experimentally, suggesting wind

FIG. 3 (color online). Arnold tongue measured over approxi-
mately 3 decades. The left plot shows the tongue obtained from
the experimental data, while the right one shows the recon-
structed tongue. The color coding corresponds to the amplitude
measured at the microphone position at the loudspeaker fre-
quency Sð�speakerÞ. To guide the eye, the synchronization region

is marked by a straight line. The synchronization edge grows
linearly with the coupling, seen as a logarithmic bend in the used
semilog plot. The lowest possible frequency resolution, 0.1 Hz,
corresponds to the variation of the frequency produced by the
wind supply, shown by the inset. The reconstructed Arnold
tongue is much more symmetric. This indicates again strong
nonlinearities. The coincidence between experiment and model
is almost perfect in the low-coupling region.
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instruments as paradigmatic for synchronization. The re-
sults confirm the theory for small coupling; for large
coupling we give experimental access to nonlinear correc-
tion terms to be analyzed further. To analyze the acoustical
properties of the pipe we propose an autonomous oscilla-
tor, reconstructed from a novel type of data analysis. The
agreement between model and experiment in terms of
Arnold tongues and power spectra is excellent—musical
and synchronization characteristics are well reproduced.
Conventional methods, as transfer functions, or admittance
[22] do not allow such a direct interpretation.

In this Letter acoustics is paired with nonlinear dynam-
ics and data mining. Organ builders have developed com-
plicated empirical rules to arrange organ pipes within a
register to avoid synchronization effects. Our results do not
only allow for an easy simulation of instruments, but as
well development cycles and tuning of instruments could
be enhanced. Noise reduction is possible by self-
organization of two sound sources such that they interfere
negatively—no external control is needed. The applica-
tions of this principle might be interesting for a variety of
technically important situations.

We acknowledge inspiring discussion with A. Pikovsky
and M. Rosenblum, and thank F. Spahn for many sugges-
tions. The organ builder company Schuke GmbH con-
structed the pipes and the wind supply system.
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FIG. 4 (color online). Left: The power spectra of the measured (black) and the reconstructed signal (gray). The musical sound is
reproduced quite nicely, as recognized by the coincidence of the spectra; for better visibility the maxima of the measured signal are
shown by black dots. The inset shows the time series and its reconstruction in the embedding space, which coincide very well. Right:
Contour plot of the function f found by nonparametric regression, the color coding is shown by the colorbar on the right.
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