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We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We

obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small

axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the

nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism

for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave

anisotropy multipoles.
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Several authors have proposed that the dark matter of the
Universe is a Bose-Einstein condensate (BEC) [1,2]. The
axion is sometimes mentioned in this context. Indeed the
axion is a boson and a cold dark matter candidate, and cold
dark matter axions are known to have huge phase space
density. But, as far as we are aware, it has never been
shown that dark matter axions form a BEC. Their phase
space density is certainly large enough, but they will only
form a BEC if they reach thermal equilibrium. This may
see unlikely because the axion is very weakly coupled.
Below we find that dark matter axions do form a BEC,
marginally because of their self-interactions, but certainly
as a result of their gravitational interactions. No special
assumptions are required.

Shortly after the standard model of elementary particles
was established, the axion was postulated [3] to explain
why the strong interactions conserve the discrete symme-
tries P and CP. For the purposes of this Letter, the action
density for the axion field ’ðxÞ may be taken to be
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where m is the axion mass. The self-coupling strength is
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in terms of the axion decay constant f and the masses mu

and md of the up and down quarks. In Eq. (1), the dots
represent higher order axion self-interactions and interac-
tions of the axion with other particles. All axion couplings
and the axion mass

m ’ 6� 10�6 eV
1012 GeV

f
(3)

are inversely proportional to f. f was first thought to be
of order of the electroweak scale, but its value is in fact
arbitrary [4]. However, the combined limits from un-
successful searches in particle and nuclear physics
experiments and from stellar evolution require f * 3�
109 GeV [5].

Furthermore, an upper limit f & 1012 GeV is provided
by cosmology because light axions are abundantly pro-
duced during the QCD phase transition [6]. In spite of their
very small mass, these axions are a form of cold dark
matter. Indeed, their average momentum at the QCD epoch
is not of order the temperature (GeV) but of order of the
Hubble expansion rate (3� 10�9 eV) then. In case infla-
tion occurs after the Peccei-Quinn phase transition, their
average momentum is even smaller because the axion field
gets homogenized during inflation. For a detailed discus-
sion, see Ref. [7]. In addition to this cold axion population,
there is a thermal axion population with average momen-
tum of order of the temperature.
The nonperturbative QCD effects that give the axion

its mass turn on at a temperature of order 1 GeV. The

critical time, defined by mðt1Þt1 ¼ 1, is t1 ’ 2�
10�7 secðf=1012 GeVÞ1=3. Cold axions are the quanta of
oscillation of the axion field that result from the turn on of
the axion mass. They have the number density
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where aðtÞ is the cosmological scale factor. Because the
axion momenta are of order 1

t1
at time t1 and vary with time

as aðtÞ�1, the velocity dispersion of cold axions is

�vðtÞ � 1

mt1

aðt1Þ
aðtÞ (5)

if each axion remains in whatever state it is in, i.e., if axion
interactions are negligible. Let us refer to this case as the
limit of decoupled cold axions. If decoupled, the average
state occupation number of cold axions is

N � n
ð2�Þ3

4�
3 ðm�vÞ3 � 1061

�
f

1012 GeV

�
8=3

: (6)

Clearly, the effective temperature of cold axions is much
smaller than the critical temperature

Tc ¼
�
�2n

�ð3Þ
�
1=3 ’ 300 GeV

�
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1012 GeV

�
5=9 aðt1Þ

aðtÞ (7)

PRL 103, 111301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 SEPTEMBER 2009

0031-9007=09=103(11)=111301(4) 111301-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.111301


for BEC. Axion number violating processes, such as their
decay to two photons, occur only on time scales vastly
longer than the age of the Universe. The only condition for
axion BEC that is not manifestly satisfied is thermal
equilibrium.

Axions are in thermal equilibrium if their relaxation rate
� is large compared to the Hubble expansion rate HðtÞ ¼
1
2t . At low phase space densities, the relaxation rate is of

order of the particle interaction rate �s ¼ n��vwhere� is
the scattering cross section. The cross section for’þ ’ !
’þ ’ scattering due to axion self-interaction is in vacuum

�0 ¼ 1

64�

�2

m2
’ 1:5� 10�105 cm2

�
m

10�5 eV

�
6
: (8)

If one substitutes �0 for �, �s is found much smaller than
the Hubble rate, by many orders of magnitude. However, in
the cold axion fluid background, the scattering rate is
enhanced by the average quantum state occupation number
of both final state axions, �� �0N 2, because energy
conservation forces the final state axions to be in highly
occupied states if the initial axions are in highly occupied
states. In that case, the relaxation rate is multiplied by one
factor of N [8]

�� n�0�vN : (9)

Combining Eqs. (4)–(6) and (8), one finds �ðt1Þ=Hðt1Þ �
Oð1Þ, suggesting that cold axions thermalize at time t1
through their self-interactions, but only barely so.

It may seem surprising that the huge and tiny factors on
the right-hand side (RHS) of Eq. (9) cancel each other. In
fact the cancellation is not an accident. Consider a generic
axionlike particle whose mass m and decay constant f are
unrelated to each other. Its self-interaction coupling

strength is �� m2

f2
. Cold axionlike particles appear at a

time t1 � 1
mwith number density nðt1Þ � f2m, and velocity

dispersion �vðt1Þ � 1. Substituting these estimates in
Eqs. (6), (8), and (9), one finds that the thermalization
rate is of order of the Hubble rate at t1, for all f and m.

A critical aspect of axion BEC phenomenology is
whether the BEC continues to thermalize after it has
formed. Axion BEC means that (almost) all axions go to
one state. However, only if the BEC continually retherm-
alizes does the axion state track the lowest energy state.

The particle kinetic equations that yield Eq. (9) are valid
only when the energy dispersion 1

2mð�vÞ2 is larger than the
thermalization rate [8]. After t1 this condition is no longer
satisfied. One enters then a regime where the relaxation
rate due to self-interactions is of order

�� � �nm�2: (10)

��ðtÞ=HðtÞ is of order one at time t1 but decreases as
taðtÞ�3 afterwards. Hence, self-interactions are insufficient
to cause axion BEC to rethermalize after t1 even if they
cause axion BEC at t1. However gravitational interactions,
which are long range, come in to play. The relaxation rate
due to gravitational interactions is of order

�g �Gnm2‘2 (11)

where ‘� ðm�vÞ�1 is the correlation length. �gðtÞ=HðtÞ is
of order 4� 10�8ðf=1012 GeVÞ2=3 at time t1 but grows as
ta�1ðtÞ / aðtÞ. Thus gravitational interactions cause the
axions to thermalize and form a BEC when the photon

temperature is of order 100 eV ðf=1012 GeVÞ1=2.
The process of axion Bose-Einstein condensation is

constrained by causality. We expect overlapping conden-
sate patches with typical size of order of the horizon. As
time goes on, say from t to 2t, the axions in t-size conden-
sate patches rethermalize into 2t-size patches. The corre-
lation length is then of order of the horizon at all times,
implying �v� 1

mt instead of Eq. (5), and �g=H / t3a�3ðtÞ
after the BEC has formed. Therefore gravitational inter-
actions rethermalize the axion BEC on ever shorter time
scales compared to the age of the Universe.
We now consider what implications axion BEC has for

observation. The axion field may be expanded in modes
labeled ~�:

’ðxÞ ¼ X
~�

½a ~�� ~�ðxÞ þ ay~��
?
~�� (12)

where the � ~�ðxÞ are the positive frequency c-number
solutions of the Heisenberg equation of motion for the
axion field

D�D�’ðxÞ ¼ g��½@�@� � ��
��@��’ðxÞ ¼ m2’ðxÞ; (13)

and the a ~� and ay~� are creation and annihilation operators

satisfying canonical commutation relations. We neglect the
self-interaction term � 1

6�’
3, which would otherwise ap-

pear on the RHS of Eq. (13), because it is of order 	
f2
’,

where 	 is the axion density, and hence smaller by the

factor ðaðt1ÞaðtÞ Þ3 t
t1
than the relevant terms (of order mt ’) in that

equation. When the self-interactions are included, one
finds an instability in the axion BEC towards the formation
of droplets. The analog of the sound speed [9] is imaginary
in this case because the self-interaction is attractive.
However, the rate of droplet formation is negligibly small
compared to the Hubble rate. The gravitational forces al-
ways dominate over the self-interactions except briefly
after the cold axions first appear at time t1.
Except for a tiny fraction, all cold axions go to a single

state which we label ~� ¼ 0. The corresponding �0ðxÞ is
the axion wave function. In the spatially flat, homogene-
ous, and isotropic Robertson-Walker space-time,

�0 ¼ A

aðtÞ3=2 e
�imt (14)

where A is a constant. The state of the axion field is jNi ¼
ð1= ffiffiffiffiffiffi

N!
p Þðay0 ÞNj0i where j0i is the empty state, defined by

a ~�j0i ¼ 0 for all ~�, and N is the number of axions. The
expectation value of the stress-energy-momentum tensor is
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hNjT��jNi ¼ N½@���
0@��0 þ @��

�
0@��0

þ g��ð�@��
�
0@

��0 �m2��
0�0Þ�: (15)

Again we neglect the self-interaction term.
Consider first the behavior of axion BEC in a flat

Minkowski space-time. Since the axions are nonrelativis-
tic, �0ðxÞ ¼ e�imt�ðxÞ with �ðxÞ slowly varying.
Neglecting terms of order 1

m @t compared to terms of order

one, Eq. (13) becomes the Schrödinger equation:

i@t� ¼ �r2

2m
�: (16)

It is useful [10] to write the wave function as

�ð ~x; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2mN

p Bð ~x; tÞei
ð ~x;tÞ: (17)

In terms of Bð ~x; tÞ and 
ð ~x; tÞ the energy and momentum
densities are (j, k ¼ 1; 2; 3) T00 � 	 ¼ m½Bð ~x; tÞ�2 and
T0j � �	vj ¼ �½Bð ~x; tÞ�2@j
, in the nonrelativistic limit.

The velocity field is therefore ~vð ~x; tÞ ¼ 1
m
~r
ð ~x; tÞ [10].

Equation (16) implies the continuity equation and the
equation of motion

@tv
k þ vj@jv

k ¼ � ~rq (18)

where

qð ~x; tÞ ¼ � r2 ffiffiffiffi
	

p
2m2 ffiffiffiffi

	
p : (19)

Following the motion, the stress tensor is

Tjk ¼ 	vjvk þ 1

4m2

�
1

	
@j	@k	� �jkr2	

�
: (20)

For ordinary cold dark matter (CDM) the last terms on the
RHS of Eqs. (18) and (20) are absent.

To compare axion BEC with CDM we divide the ob-
servations into three arenas: (1) the behavior of density
perturbations on the scale of the horizon, (2) their behavior
during the linear regime of evolution within the horizon,
and (3) their behavior during the nonlinear regime. We first
discuss arena 2 where CDM provides a very successful
description. Neglecting second order terms, the perturba-
tion in the stress tensor implied by Eq. (20) is

�Tjk ¼ ��jk

	0ðtÞ
4m2

r2�ð ~x; tÞ (21)

where 	0ðtÞ is the unperturbed axion density and �ð ~x; tÞ �
�	ð ~x;tÞ
	0ðtÞ . Because the RHS of Eq. (21) is proportional to the

Kronecker symbol and the RHS of Eq. (18) is a gradient,
vector and tensor perturbations are not affected by the
additional forces associated with the axion BEC. Only
the scalar perturbations are affected. The scalar perturba-
tions are conveniently described in conformal Newtonian
gauge [11] where the metric is

ds2 ¼ �½1þ 2c ð ~x; tÞ�dt2 þ aðtÞ2½1þ 2�ð ~x; tÞ�d~x � d~x:
(22)

Conservation of energy and momentum in this background
implies the first order equations

@t�þ 1

a
~r � ~v ¼ �3@t�þ 3H

4m2a2
r2�

@t ~vþH ~v ¼ � 1

a
~rc þ 1

4m2a3
~rr2�

(23)

where H ¼ 1
a

da
dt . The equations for CDM are recovered by

lettingm ! 1. The RHS of Einstein’s equations are modi-
fied by the addition of �Tjk to the stress tensor, but this

modification does not play a role in our discussion because
it is suppressed, relative to the leading terms, by the factor

ðkphm Þ2, where kph is the physical wave vector of the

perturbation.
It is clear from Eqs. (23) that axion BEC differs from

CDM on small scales only. For scales that are well within
the horizon (kph � H), Eqs. (23) plus Einstein’s equations

imply

@2t �þ 2H@t��
�
4�G	0 � k4

4m2a4

�
� ¼ 0 (24)

for the Fourier components �ð ~k; tÞ of �ð ~x; tÞ. ~k ¼ a ~kph is a

comoving wave vector. We assumed � ¼ �c which is
almost always the case [11] and certainly valid during the
matter dominated era. Equation (24) shows that the axion
BEC has Jeans length

k�1
J ¼ ð16�G	m2Þ�ð1=4Þ

¼ 1:02� 1014 cm

�
10�5 eV

m

�
1=2

�
10�29 g=cm3

	

�
1=4

:

(25)

The Jeans length is small compared to the smallest scales
(� 100 kpc) for which we have observations on the be-
havior of density perturbations in the linear regime. Thus
axion BEC and CDM are indistinguishable in arena 2 on all
scales of observational interest.
In the nonlinear regime of structure formation (arena 3)

and in the absence of rethermalization, the relevant equa-
tions are

@t	þ ~r � ð	 ~vÞ ¼ 0; ~r� ~v ¼ 0

@t ~vþ ð ~v � ~rÞ ~v ¼ � ~rc � ~rq:
(26)

Equations (26) are equivalent to the Schrödinger equation
for particles in a Newtonian gravitational field. Axion BEC

and CDM differ in that the � ~rq term is absent from the
force law for CDM. However, as was shown by numerical
simulation [12], and as is expected from theWKB approxi-
mation, the differences occur only on length scales smaller
than the de Broglie wavelength. Since the axion de Broglie
wavelength (of order 10 meters in galactic halos) is negli-
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gibly small compared to all length scales of observational
interest, we again find that axion BEC and CDM are
indistinguishable when there is no rethermalization of the
BEC.

However, we found that gravitational interactions do
rethermalize the axion BEC continually so that the axion
state tracks the lowest energy state. This is relevant to the
angular momentum distribution of dark matter axions in
galactic halos. The angular momentum of galaxies is
caused by the gravitational torque of nearby galaxies early
on when protogalaxies are still close to one another [13].
The angular momentum distribution acquired by the dark
matter particles determines the structure of the inner caus-
tics that they form in galactic halos [14,15]. If that distri-
bution is characterized by net overall rotation, implying
~r� ~v � 0, the inner caustics are a set of ‘‘tricusp rings’’

[14]. If the velocity field is irrotational ( ~r� ~v ¼ 0), the
inner caustics have a tentlike structure [15] quite distinct
from that of tricusp rings. Evidence has been found for
tricusp rings [16], as opposed to the tentlike caustics of the
~r� ~v ¼ 0 case. This raises a puzzle for CDM. Indeed one
can show [15] that the velocity field of ordinary cold dark
matter, such as weakly interacting massive particles, re-
mains irrotational as it is the result of gravitational forces
which are proportional to the gradient of the Newtonian
potential. The puzzle is solved if the dark matter is an axion
BEC which rethermalizes while tidal torque is applied to it.
Indeed, the lowest energy state for given total angular
momentum is one in which each particle carries an equal
amount of angular momentum. In that case there is net

overall rotation. ~r� ~v � 0 is accommodated in the BEC
through the appearance of vortices. The phenomenon is
observed in quantum liquids and well understood [10].

Finally, we consider the behaviour of density perturba-
tions as they enter the horizon (arena 1). Here too axion
BEC may differ from CDM. The CDM perturbations
evolve linearly at all times. The axion BEC perturbations
do not evolve linearly when they enter the horizon because
the condensates which prevailed in neighboring horizon
volumes rearrange themselves, through their gravitational
interactions, into a new condensate for the expanded hori-
zon volume. This produces local correlations between
modes of different wave vectors since the perturbation of

wave vector ~k, upon entering the horizon, is determined by

the perturbations of wave vector say 1
2
~k in its neighbor-

hood. We propose this as a mechanism for the alignment of
cosmic microwave background radiation anisotropy multi-
poles [17] through the integrated Sachs-Wolfe effect.
Unlike CDM, the integrated Sachs-Wolfe effect is large
in axion BEC because the Newtonian potential c changes
entirely after entering the horizon in response to the re-
arrangement of the axion BEC.

We conclude that a case can be made that a large fraction
of the dark matter is axions. Although the QCD axion is
best motivated, a large class of axionlike particles has the
properties described here.
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