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We investigate the effects of a strong number fluctuations on traveling waves in the Fisher-Kolmogorov

reaction-diffusion system. Our findings are in stark contrast to the commonly used deterministic and

weak-noise approximations. We compute the wave velocity in one and two spatial dimensions, for which

we find a linear and a square-root dependence of the speed on the particle density. Instead of smooth

sigmoidal wave profiles, we observe fronts composed of a few rugged kinks that diffuse, annihilate, and

rarely branch; this dynamics leads to power-law tails in the distribution of the front sizes.
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Traveling waves are a common phenomenon in many
systems that combine diffusion and reaction of particles.
Familiar examples are the combustion fronts running
through a premixed reactive gas, or the expanding fronts
of bacterial colonies. The standard model for these wave-
like phenomena is the stochastic Fisher-Kolmogorov-
Petrovsky-Piscounov (SFKPP) equation, the simplest non-
linear model that blends diffusion, growth, and number
fluctuations. It has been used widely in population genetics
[1], ecology [2], epidemiology [2], chemical kinetics [3,4],
and recently even in quantum chromodynamics [5].

Our current understanding of traveling waves in
reaction-diffusion systems is shaped by studies of the
SFKPP equation that have focused on the weak-noise
regime. The opposite limit of strong noise is relatively
unexplored, yet arguably of equal importance. Not only
does it occur naturally, when the driving forces of traveling
waves are weak [6]; it also unravels fundamentally differ-
ent and often counterintuitive aspects of the SFKPP equa-
tion. The focus of this Letter is on two intimately related
questions of how fast these traveling waves move and what
their shape is.

Recently, the velocity of a one-dimensional wave has
been computed in the strong noise limit with the help of a
duality between the SFKPP equation and A Ð Aþ A
reaction-diffusion system [7]. Here, we treat the growth
(reaction) term as a small perturbation, and construct a
more direct and more powerful method to calculate the
speed of the wave than the one used in Ref. [7]. Our
technique has three important advantages. First, the per-
turbation expansion enables us to compute the wave ve-
locity in two dimensions. We find a square-root
dependence of the terminal velocity on the particle density.
Second, our approach allows studying the shape of the
front on time and length scales that are dominated by the
noise. We find that, in one dimension, the noise alone can

stabilize the front and limit its diffusive broadening. The
front size distribution exhibits power-law tails due to
spontaneous creation and subsequent annihilation of new
transition regions. Third, the perturbation expansion can be
applied to more general models with polynomial reaction
terms of higher order.
Without any loss of generality, we discuss the SFKPP

equation from the point of view of population genetics,
where it is easy to interpret, simulate, and potentially test
[6]. In this context, the SFKPP is used to describe how a
mutation that increases the growth rate of its carrier
spreads through a homogeneous population [1] (see also
Ref. [8] for a recent review). In one dimension, the relative
abundance pðt; xÞ 2 ½0; 1� of a beneficial mutation at time t
and position x is described by

@p

@t
¼ D

@2p

@x2
þ apð1� pÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bpð1� pÞ

q
�ðt; xÞ: (1)

The diffusion term is due to the short-range migration of
the individuals. The diffusivity D is proportional to the
average dispersal distance in one generation. The reaction
term, apð1� pÞ, accounts for different fitnesses of the
mutant and the ‘‘wild’’ type, and the reaction rate a > 0
is the difference in their growth rates. The last term on the
right-hand side of Eq. (1) describes the sampling error
during reproduction, and is commonly referred to as ge-
netic drift or number fluctuations. The strength of the noise
b > 0 is inversely proportional to the population density,
and the (Itô) white noise �ðt; xÞ satisfies the following
condition: h�ðt1; x1Þ�ðt2; x2Þi ¼ �ðt1 � t2Þ�ðx1 � x2Þ,
where �ð�Þ stands for Dirac’s delta function.
One of the most important predictions of the SFKPP

equation is the velocity v of an isolated wave that moves
from the left half-space occupied by the mutant into the
right half-space occupied by the wild type. The boundary
between the half-spaces is assumed to be sharp initially,
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pð0; xÞ ¼ 1� �ðxÞ, where �ðxÞ is the Heaviside step func-
tion. In the deterministic limit (b ¼ 0), the wave acquires a
stationary shape with exponential tales, and the velocity of

the front approaches vF ¼ 2
ffiffiffiffiffiffiffi
Da

p
[1,3]. In the presence

of noise, the behavior of the one-dimensional SFKPP is
controlled by the dimensionless number b2=ðaDÞ.
Surprisingly, even weak noise, b2 � aD, gives rise to
large corrections to the velocity, v ¼ vF �O½ln�2ð1=bÞ�
[9], indicating the importance of fluctuations. Here, we
access the strong noise regime, b2 � aD, by constructing
a perturbation expansion in the reaction rate a, while
treating the noise term exactly.

Let us define the average instantaneous velocity of the
wave as v ¼ d

dt h
R1
�1 pðt; xÞdxi, which is consistent with

the usual definition in the deterministic limit. We then take
the time derivative inside the integral and use Eq. (1) to

eliminate @p
@t ; after integrating by parts and averaging, we

obtain an alternative expression for the velocity,

v ¼ a
Z 1

�1
hpðt; xÞ½1� pðt; xÞ�idx; (2)

which relates the wave speed and the second moment of the
dynamical field pðt; xÞ.

Note that, to the first order in a, the instantaneous
velocity is given by aIðtÞ=2, where the moment IðtÞ ¼R1
�1h2pðt; xÞ½1� pðt; xÞ�idxja¼0 is evaluated in the neu-

tral limit a ¼ 0, when neither the mutant nor the wild
type have a selective advantage. The neutral model is
exactly solvable because the hierarchy of the moment
equations closes [8,10]. For the purpose of this Letter, it
is sufficient to consider only the two-point correla-
tion function Hðt; x1; x2Þ � hpðt; x1Þ½1� pðt; x2Þ�i þ
hpðt; x2Þ½1� pðt; x1Þ�i, which is known in population ge-
netics as the average spatial heterozygosity. Hðt; x1; x2Þ is
the average probability that, at a time t, two individuals
sampled at x1 and x2 carry different genetic variants. The
equation of motion for H is obtained by differentiating its

definition with respect to time and eliminating @p
@t with the

help of Eq. (1). Note that the rules of the Itô calculus must
be used to properly account for the effects of the noise
[8,10]. The result is

@H

@t
¼ D

�
@2

@x21
þ @2

@x22

�
H � bH�ðx1 � x2Þ: (3)

An intuitive way to derive Eq. (3) is to follow the
lineages of the two sampled organisms backward in time.
Then,Hðt; x1; x2Þ changes because the individuals migrate,
which is represented by the diffusion term, and because
they may have a common ancestor, which is represented by
the term proportional to the delta function, since such an
event is only possible when the lineages meet.

We compute Hðt; x1; x2Þ because it has information
about the shapes of the wave front and is related to IðtÞ,
and thus v, by IðtÞ ¼ R1

�1 Hðt; x; xÞdx. To this end, we
introduce new spatial variables, � ¼ ðx1 þ x2Þ=2 and � ¼

x1 � x2, encoding the average position of two sam-
pling points and the distance between them, respectively.
After a Laplace transform in t and Fourier transform in �,
Eq. (3) can then be solved for ~Hðs; k; �Þ �R1
0 dte�st

R1
�1 d�e�ik�Hðt; �; �Þ. For the sharp front ini-

tial condition, the solution reads

~Hðs; k; �Þ ¼ 1

sþDk2

2
64 e�

ffiffiffiffiffiffiffiffiffi
s
2Dþk2

4

p
j�j

b
4D þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2D þ k2

4

q þ 2

k
sin

�
kj�j
2

�375:

(4)

From the definition of IðtÞ, it follows that the Laplace
transform of IðtÞ equals ~Hðs; 0; 0Þ. Performing the inverse
Laplace transform, we get limt!1IðtÞ ¼ 4Db�1. Equation
(2) then implies that the terminal velocity equals 2aD=b in
agreement with Ref. [7].
Since only the regions with pðt; xÞ � 0; 1 contribute to

IðtÞ, the finite limit of IðtÞ as t ! 1 may look counter-
intuitive because it suggests a finite length of the transition
regions. In other words, the noise term alone limits the
diffusive widening of the front. Qualitatively, this phe-
nomenon can be understood by noticing that the probabil-
ity of reaching local fixation (p ¼ 0 or p ¼ 1) is very large
at the tails of the front, so the stationary shape of the front
might be maintained by a balance of the diffusive spread-
ing of the genetic variants into each other’s territory and
their subsequent loss due to number fluctuations (genetic
drift).
We analyze this peculiar phenomenon further via parti-

cle simulations. Since our perturbation analysis suggests
that, on sufficiently small length scales, the wave dynamics
can be well approximated by neglecting Darwinian selec-
tion, we set a ¼ 0 in the simulations. A snapshot of a
typical transition region between p ¼ 1 and p ¼ 0 is
shown in the inset of Fig. 1; the transition occurs on a
very short length scale set byD=b. The inset also shows the
local heterozygosity h0ðt; �Þ ¼ 2pðt; �Þ½1� pðt; �Þ�,
which is nonzero only at the kink. The new coordinate �
is defined such that

R
0
�1 h0ðt; �Þd� ¼ R1

0 h0ðt; �Þd� ; i.e.,
point � ¼ 0 is always in the center of the wave. Such a
definition allows us to focus on the shape of the wave by
eliminating the diffusion of the front. It is then instructive
to characterize the average shape of the wave by F ð�Þ ¼
limt!1hpðt; �Þi and Kð�Þ ¼ limt!1hh0ðt; �Þi. In contrast
to the narrowness of a typical boundary, these average
characteristics show power-law tails with exponents close
to �1 and �2, respectively; see Fig. 1.
The power-law tails of Kð�Þ and F ð�Þ can also be

inferred from the exact solution for the two-point correla-
tion function given by Eq. (4). One can see that
~Hðs; k; �Þ ¼ Gðs; kÞEðs; k; �Þ, where G ¼ 1=ðsþDk2Þ is
the diffusion Green’s function, which describes the motion
of the center of the wave, and E describes the evolution of
the shape of the wave front. This decomposition implies
that the front diffuses with diffusivityD independent of the
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noise strength b set by the population density. Furthermore,
since factorization in the Fourier and Laplace domains
corresponds to convolution in the space and time domains,
we can think of Eðt0; �0; �Þ as a contribution to ~Hðt; �; �Þ
from a wave that was present a distance �� �0 away and
time t� t0 ago. Power laws in the front size distribution
should be reflected in the asymptotic behavior of Eðt; �; �Þ.
We get Eðt; �; � ¼ 0Þ ¼ �ðtÞffiffiffiffiffiffi

2�t
p e��2=2t from Eq. (4), where

�ðtÞ ¼ R1
�1 d�Eðt; �; � ¼ 0Þ � t�3=2 for large times. The

new function�ðtÞ is the contribution toH from a transition
region present t ago anywhere in space. SinceR1
0 dtEðt; �; � ¼ 0Þ � ��2 for large �, we may conclude

that the probability that a kink is located � away from the
center of the wave should decay like a power law with
exponent �2. Indeed, this matches the observed behavior
of Kð�Þ for large arguments.

The algebraic decay of correlations inside a wave front
and the slow approach of IðtÞ to its limit as t ! 1 are in
contrast to the narrowness of a typical wave front shown in
the inset of Fig. 1. It is unlikely that a single narrow front
relaxes so slowly, but several diffusing fronts can exhibit

very slow relaxation, give rise to power-law tails ofK and
F , and still have a finite value of Iðt ¼ 1Þ. Indeed, we find
spontaneous creation of new kinks in our simulations. This
process can be interpreted as the following reaction: A !
ð2zþ 1ÞA, where A represents a kink, and z is an integer.
Note that the reaction with z ¼ 1 is the most frequent.
Neighboring kinks can also merge and subsequently dis-
appear, which is equivalent to the annihilation reaction
Aþ A ! 0. Thus the behavior of the front can be de-
scribed by the dynamics of branching annihilating random
walks (BARW) with even number of offspring [11].
For a sufficiently small birth rate, the number of BARW

remains finite [11], which is consistent with the finite value
of Iðt ¼ 1Þ. Moreover, we can understand the asymptotic
behavior of Kð�Þ and F ð�Þ by considering the dynamics
of only three annihilating random walks (ARW); a higher
number of ARW leads to subleading corrections as one can
easily show by generalizing our analysis of three ARW. In
the ARM picture Kð�Þ is proportional to the average
number of ARW present at position � , and F ð�Þ /R
Kð�Þd� / ��1 because, for large � , F ð�Þ is propor-

tional to the probability that the farthest transition region
is at least � away from the origin.
Since three ARW eventually annihilate, and the process

repeats, it is sufficient to consider only one cycle from
A ! 3A to 3A ! A. Let Pðt; x1; x2; x3Þ be the probabil-
ity to find three ARW at time t at positions x1 > x2 > x3,
which obeys a three-dimensional diffusion equation,
with the following absorbing boundary conditions
Pðt; x1; x2; x2Þ ¼ Pðt; x1; x1; x3Þ ¼ Pðt; x1; x2; x1Þ ¼ 0. Upon
using the solution of this diffusion problem from Ref. [12],

we obtain Kð�Þ / R
dtdx1dx2dx3�½� �ðx1 � x1þx2þx3

3 Þ� �
Pðt; x1; x2; x3Þ / ��2. Also note that the survival probability

of three ARW
R
dx1dx2dx3Pðt; x1; x2; x3Þ � t�3=2 for long

times [12], which matches the behavior of �ðtÞ. Thus, on
large length scales, the one-dimensional SFKPP equation
seems indeed equivalent to a one-dimensional reaction-
diffusion system of BARW.
What happens in higher dimensions? The noisy FKPP

equation Eq. (1) can easily be extended to two spatial
coordinates upon substituting x ! r ¼ ðx; yÞ, provided
one limits the short-wave length variations of the field
pðt; rÞ by a cutoff l, e.g., representing the lattice constant
in the model. The speed of a planar wave front traveling in
the x direction again takes the form of Eq. (2), and depends
on the moment IðtÞ. Solving the two-dimensional neutral
version of Eq. (1) yields

~IðsÞ ¼
ffiffiffiffiffiffiffi
2D

p
s�3=2

1þ b
8�D lnð32�2D

l2s
Þ ð2dÞ (5)

for the Laplace transform of IðtÞ. Up to logarithmic cor-
rections, we find that the second moment increases as

IðtÞ �D3=2b�1t1=2 for long times. Consequently, the

wave speed should increase without bound as vðtÞ ¼
aIðtÞ=2 / t1=2, rendering the perturbation expansion sin-
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FIG. 1 (color online). Simulation of the neutral one-
dimensional stepping stone model [14]. The model considers a
line of sites (demes) labeled by an integer j. Each of the demes is
occupied by N individuals that carry one of the two genetic
variants. Every generation, neighboring demes exchange Nm
migrating organisms. Migration is followed by the Wright-Fisher
reproduction; i.e., the next generation is formed by N organisms
sampled from the Bernoulli distribution with the probability of
sampling a particular genetic variant equal to its fraction in the
current generation. Here, N ¼ 10, andm ¼ 0:1; the total number
of demes is 1501. We ensure that the wave front remains within
the simulated habitat by moving � ¼ 0 to the center of the
habitat every third generation. The inset shows a snapshot of
the wave front pðt; �Þ [red (lighter) color] and the local hetero-
zygosity h0ðt; �Þ (solid line) as functions of the deme index j
after 107 generations starting from the step function initial
condition. The main plot shows F ð�Þ (dashed curve) and
Kð�Þ (solid curve) obtained over 108 generations. For large � ,
the functions have the following asymptotic scalings F ð�Þ /
��1 and Kð�Þ / ��2 shown by dot-dashed and dotted lines,
respectively.
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gular. We circumvent this difficulty by noticing the front
does not have enough time to fully relax as predicted by the
neutral dynamics. Relaxation only occurs over a limited
time t	, which is roughly the time when deterministic
motion of the front is of the same order as its diffusive

motion: vt	 ¼ ffiffiffiffiffiffiffiffiffiffiffi
2Dt	

p
, i.e., t	 ¼ 2Dv�2. If this time is

large, we may impose a self-consistency condition, v ¼
2aIðt	Þ, which leads to the scaling v�D

ffiffiffiffiffiffiffiffiffi
a=b

p
(up to

log corrections) for the wave velocity. This heuristic argu-
ment, which can be formalized by a multiple-scale ansatz

[13], predicts a crossover from the no-noise speed v�
2

ffiffiffiffiffiffiffi
aD

p
to v�D

ffiffiffiffiffiffiffiffiffi
a=b

p
for large values of the noise strength,

b � D. Simulated wave fronts indeed exhibit this cross-
over, see Fig. 2.

In conclusion, we have presented a perturbative ap-
proach to the one-dimensional SFKPP reaction-diffusion

system with strong number fluctuations, which can be
extended to higher dimensions using self-consistency argu-
ments. In one and two dimensions, we found a linear and a
novel square-root relationship between the speed of trav-
eling waves and the particle density, respectively. The
wave profiles have also been analyzed in one dimension
using three different approaches: Simulations, the corre-
spondence between BARW and SFKPP equation, and the
exact solution for the two-point correlation function. All of
these approaches predict that the front size distribution has
a power-law tail with a cutoff, which is in contrast to the
exponential tails of deterministic Fisher waves. The power-
law tail is best understood as a consequence of spontaneous
creation of several transition regions that behave as BARW.
Finally, we note that our perturbation expansion also ap-
plies to generalized SFKPP equations with higher order
polynomial reaction terms. This can be used, for instance,
to show that the spread of recessive and dominant benefi-
cial mutations is the same [13].
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FIG. 2 (color online). The velocity of planar fronts in the two-
dimensional stepping stone model. The simulations are identical
to the ones described in Fig. 1 with two exceptions. First, we
consider a comoving square lattice of 250� 250 sites instead of
a linear array. Second, the mutant is 1þ S times more likely to
reproduce than the wild type. The simulations are initialized by a
sharp steplike front profile and run for 2� 107 generations. The
correspondence between the parameters in the simulations and in
the SFKPP equation can be expressed as N ¼ l2=ðb�Þ ¼ 10, S ¼
a�, m ¼ D�=l2, where l and � are the lattice constant and the
generation time, respectively. For large noise, the wave velocity
closely follows a power law v

vF
/ ðNmÞ1=2 ¼ D=b. Deviations

are primarily due to log corrections and mimic a power law with
an exponent slightly smaller than �1=2. Note, the scaling

regimes almost collapse in a plot 	 � ðv=vFÞ
ffiffiffiffiffiffiffiffiffi
s=m

p ¼ ðv=vFÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
al2=D

p
versus 
 � ðNSÞ�1 ¼ b=ðal2Þ, see the inset. The solid

line is the solution of 	2 ¼ c1=½
 lnðc2	Þ� with the fitting
parameters c1 ¼ 0:45 and c2 ¼ 1.
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