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We study theoretically the transport properties of a normal metal (N)/ferromagnet insulator

(FI)/superconductor (S) junction and a S/FI/S junction formed on the surface of a three-dimensional

topological insulator, where the chiral Majorana mode exists at the FI/S interface. We find the chiral

Majorana mode generated in N/FI/S and S/FI/S junctions is very sensitively controlled by the direction of

the magnetization m in the FI region. In particular, the current-phase relation of the Josephson current in

S/FI/S junctions has a phase shift of neither 0 nor � that can be tuned continuously by the component ofm

perpendicular to the interface.
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A class of time-reversal symmetric insulators with non-
trivial topological properties has been proposed theoreti-
cally and discovered experimentally [1–3]. The hallmark
of this insulator, i.e., a topological insulator (TI), is the
edge or surface channels, while the bulk states are gapped.
In the two-dimensional (2D) case, helical modes appear at
the edge of the sample, i.e., the pair of one-dimensional
modes connected by the time-reversal symmetry and prop-
agating in the opposite directions for opposite pseudospins
[2]. This is analogous to the chiral edge modes in the
quantum Hall systems [4]. Therefore, the TI in the 2D
case can be regarded as two copies of the quantum Hall
systems for up and down pseudospins [5], and is often
called the quantum spin Hall system. In the three-
dimensional (3D) case, there are two classes of TIs, i.e.,
weak TIs (WTIs) and strong TIs (STIs), corresponding to
the even (WTI) and odd (STI) number of the chiral Dirac
fermions on the surface [6]. Since the even number of
Dirac fermions can be paired to open the gap, those in
WTIs are fragile against the disorder and/or the interac-
tions, while they are robust in STIs. The 2D quantum spin
Hall system is adiabatically continued to theWTI when the
weak interlayer coupling is tuned, while the STI has no
analogue to the quantum Hall system, and is a genuine new
state of matter.

The 2D chiral Dirac fermion on the surface of the STI is
protected by the bulk gap and its topological property.
Therefore, it offers an interesting system to look for the
2D superconductivity with the Cooper pairs mediated by
the bosonic excitations, e.g., phonons and excitons, in the
STI. Fu and Kane studied the superconductivity induced by
the proximity effect to the surface of the STI [7].
Considering the interface between the ferromagnetic insu-
lator (FI) and conventional superconductor (S), they pre-
dicted the appearance of the chiral Majorana state as an
Andreev bound state [7]. We call this the chiral Majorana

mode (CMM), which has a dispersion along the interface
while it is confined along the direction perpendicular to the
interface. Detecting the Majorana fermions in terms of the
interferometry has been proposed also [8,9].
The presence of the CMM is predicted in the px þ ipy

chiral superconductors [10], e.g., Sr2RuO4. However, the
control of the chiral domains and manipulation of the edge
channels are experimentally difficult [11]. In addition, the
px þ ipy superconductivity is very fragile against the dis-

order. Also, the CMMs in the 3He and cold atoms have
been studied theoretically [12], but they are neutral sys-
tems and charge transport is missing there. Therefore, the
present system offers a unique opportunity to study the
quantum charge transport specific to the CMM and its
control, which is more promising to be realized experi-
mentally. However, its theoretical studies have been lim-
ited to focusing on the detection of the Majorana fermion
itself [8,9,13].
In this Letter, we study the manipulation of the quantum

transport properties associated with Majorana fermions at
the interface of the S and FI generated on the surface of a
TI. Hereafter, since we concentrate on the STI, we denote
the TI instead of the STI for simplicity. We show that the
direction of the magnetizationm can be used to control the
Andreev reflection and Josephson current via the CMM
generated in normal metal (N)/FI/S and S/FI/S junctions,
offering a unique method for superconducting spintronics.
We consider FI/S and S/FI/S structures formed on the

surface of 3D topological insulators as shown in Fig. 1. We
concentrate on the situation where the TI below the FI
becomes the ferromagnetic insulator due to the exchange
coupling. Since the surface state of the TI is metallic, we
can regard the configuration shown in Fig. 1(a) as a N/FI/S
junction with Nðx < 0Þ, FIð0< x < dÞ, and Sðx > dÞ. We
also consider the S/FI/S junction as shown in Fig. 1(b) with
Sðx < 0Þ, FIð0< x < dÞ, and Sðx > dÞ. The interfaces
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N(S)/FI and FI/S locate at x ¼ 0 and x ¼ d, respectively.
We assume that the chemical potentials in N and S are
equal to each other.

The Hamiltonian of the surface state on the TI is given
by

�H S ¼ ĤðkÞ þ M̂ �̂

��̂� �Ĥ�ð�kÞ � M̂�

 !
(1)

with ĤðkÞ ¼ vFð�̂xkx þ �̂ykyÞ ��½�ð�xÞ þ�ðx� dÞ�,
and M̂ ¼ m � �̂�ðd� xÞ�ðxÞ with m � �̂ ¼ mx�̂x þ
my�̂y þmz�̂z. Here, �, �̂, vF, m denote chemical poten-

tial, Pauli matrices, velocity, and magnetization (times the
exchange coupling constant which we assume to be 1),
respectively [7]. Note that m enters as an effective vector
potential A of the electromagnetic field. The pairing
symmetry of the superconductor is assumed to be an

s wave, and �̂ is given as �̂ ¼ i�̂y��ðx� dÞ and �̂ ¼
i�̂y½��ðx� dÞ þ ��ð�xÞ expði’Þ� for N/TI/S and

S/TI/S junctions, respectively, where ’ denotes the macro-
scopic phase difference between left and right super-
conductors. In general, the magnitude of � is smaller
than that of the bulk energy gap of a superconductor
deposited on a TI due to the nonideal S/TI interface [14].

First, let us consider the N/FI/S junction [Fig. 1(a)]. A
wave function of an electron injected from N with an in-
jection angle � is given as�T¼ expðikyyÞ½�NðxÞ�ð�xÞþ
�FIðxÞ�ðxÞ�ðd�xÞþ�R

S ðxÞ�ðx�dÞ�, where ky ¼
kF sin� is the momentum parallel to the interface with
vFkF ¼ �. Quasiparticle energy E is measured from �.
�NðxÞ, �FIðxÞ, and �R

S ðxÞ are given by

�NðxÞ ¼ ½ð�in þ a�hrÞ expðikxxÞ þ b�er expð�ikxxÞ�;
(2)

�FIðxÞ ¼ ½�e1 expð�~�exxÞ þ�e2 expð~��
exxÞ

þ�h1 expð~�hxxÞ þ�h2 expð�~��
hxxÞ�; (3)

�R
S ðxÞ ¼ ½�et expðikxxÞ þ�ht expð�ikxxÞ�; (4)

with kx¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=vFÞ2�k2y

q
, ~�eðhÞx¼�eðhÞxþ imx=vF, �ex¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
zþðvFkyþmyÞ2

q
=vF, and �hx¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

zþðvFky�myÞ2
q

=

vF. The four component wave functions c in, c hr, and
c er are given by Tc in ¼ ð1; expði�Þ; 0; 0Þ, Tc hr ¼ð0; 0; 1;� expð�i�ÞÞ, Tc er ¼ ð1;� expð�i�Þ; 0; 0Þ, with
expði�Þ ¼ ðkx þ ikyÞ=kF. Other wave functions c e1, c e2,

c h1, c h2, c et, and c ht are obtained by solving Eq. (1) in a
similar way by assuming jEj, � � �; jmzj.
The coefficients of the Andreev reflection a and nor-

mal reflection b are obtained by imposing the boundary
condition �Nðx ¼ 0Þ ¼ �FIðx ¼ 0Þ, and �FIðx ¼ dÞ ¼
�R

S ðx ¼ dÞ. Then, the angle-resolved tunneling conduc-

tance for injection angle � is obtained by the standard
way as �Sð�Þ ¼ 1þ jaj2 � jbj2. It is noted that �Sð�Þ is
not influenced by mx. The normalized angle-averaged
tunneling conductance � by its value in the normal state
is given by [15]

� ¼
R�=2
��=2 �Sð�Þ cos�d�R�=2
��=2 �N cos�d�

: (5)

�N denotes the transparency of the junction in the
normal state given by �N ¼ 1=½cosh2ð�exdÞ þ
tan2�sinh2ð�exdÞðky þmy=vFÞ2=�2

ex�. First, we focus on

the case with my ¼ 0. In this case, �Sð�Þ can be given by

�Sð�Þ ¼ �N½1þ �N j � j2 �ð1� �NÞ j � j4�
j 1þ ð1� �NÞ expði�Þ�2 j2 (6)

with expði�Þ ¼ ½mz cos�þ i� sin��=½mz cos�� i� sin��
and � ¼ �=ðEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � �2

p
Þ. For �N ! 0, the denomina-

tor of �Sð�Þ becomes zero at E ¼ Eb

Eb ¼ � �� sin�sgnðmzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2sin2�þm2

zcos
2�

q : (7)

This condition coincides with the formation of the CMM at
the FI/S interface with semi-infinite S. The CMM and
Andreev reflection are strongly related to each other, and
j a j¼ 1 is satisfied at E ¼ Eb independent of �N. It is
noted that the sign of Eb is changed by reversing the
direction of magnetization mz. Eb, �Sð�Þ, and � are inde-
pendent of mx. As a special limit of mz ¼ �, this formula
includes the case of the chiral px þ isgnð�mzÞpy-wave

superconductor where Eb is reduced to be Eb ¼
��sin�sgnðmzÞ [16], although the given pair potential is
a full gap s wave. It is remarkable that the sign of mz

corresponds to the chirality of the CMM, which can be
controlled by the direction of magnetization of FI. Here,
we focus on the bias voltage V dependence of � with E ¼
eV. As shown in Fig. 2, the resulting � has a zero bias
conductance peak originating from the peak of �Sð�Þ at
E ¼ Eb. As seen from the left panel of Fig. 2, the slope of
the curve of Eb around Eb ¼ 0 (� ¼ 0) becomes gradual
with the decrease of �=mz. Then, the contribution around
� ¼ 0 becomes significant in the integral of the numerator
in Eq. (5), and the resulting height of the zero bias con-

(a) (b)

TI

FI S

TI

SS FI

x=0 x=0x=d x=d

m m

x x

y
z z

y

FIG. 1 (color online). Schematic illustration of the junction.
(a) N/FI/S junction and (b) S/FI/S junction formed on the surface
of a 3D TI. The current is flowing on the surface of the TI.
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ductance peak is enhanced with the decrease of the mag-
nitude of �=mz as shown in the right panel.

The presence of my also influences the CMM as shown

in the left panel of Fig. 3. The slope of the curve around
E ¼ 0 becomes gradual (steep) for the positive (negative)
value ofmy. The angle-resolved conductance�Sð�Þ plotted
in the right panel of Fig. 3 has a peak corresponding to the
CMM and is asymmetric around � ¼ 0, i.e., �Sð�Þ �
�Sð��Þ. However, as seen from curves A and B or curves
C and D, �Sð�; eVÞ ¼ �Sð��;�eVÞ is satisfied. Because
of this relation, the line shape of resulting angle-averaged
� is symmetric around eV ¼ 0 when the average is taken
equally between positive and negative �. However, if we
consider ferromagnetic metal withmy � 0 as an electrode,

we can expect an asymmetric line shape of � around eV ¼
0 since the shift of ky by my breaks the symmetry between

� and �� in the integral of Eq. (5). The present CMM is
significantly different from that in the noncentrosymmetric
superconductor, where CMM appears as helical edge
modes [17]. In the present case, one of the spin-split bands
is missing compared with the noncentrosymmetric
superconductors.

Next, we focus on the Josephson current in the S/FI/S
junction [Fig. 1(b)] for my ¼ 0. Since the magnitudes of

the pair potential of the left and right superconductors are
equal to each other, it is possible to evaluate the Josephson
current by using the CMMs formed in S/FI/S junctions
[18]. The CMMs can be obtained as in the case of the
N/FI/S junction with wave functions of Eq. (1) under a
proper boundary condition. The resulting Josephson cur-
rent I can be obtained as

eIRN ¼ sinð’� 2�ÞR�=2
��=2 d�

��2 tanhðEJ=2kBTÞ�N cos�
2EJR�=2

��=2 d��N cos�
; (8)

EJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Ncos

2ð’=2� �Þ þ ð1� �NÞðEb=�Þ2
q

�; (9)

with resistance in the normal state RN, � ¼ mxd=vF, and
temperature T. The appearance of � in the current-phase
relation stems from the fact that ~�eðhÞx in Eq. (3) becomes

complex number in the presence of mx. The position of the
present CMMs in S/FI/S junctions is given by �Eb ¼ �EJ.
The expression of �Eb can be explained by the hybridiza-
tion of two CMMs formed at the left S/FI interface and
right FI/S interface. The formula of �Eb [Eq. (9)] is very
general including several preexisting cases. As a special

limit with Eb ¼ �, and mx ¼ 0, �Eb is reduced to �Eb ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ð’=2Þ þ ð1� �NÞsin2ð’=2Þ
p

�, which corresponds
to the Andreev bound state in a conventional S/nonmag-
netic insulator (NI)/S junction [19]. If we choose Eb ¼ 0,
and mx ¼ 0, the bound state formula in the dxy(px)-wave

/NI/dxy(px)-wave junction is reproduced [19]. To under-

FIG. 3 (color online). Left panel: CMM energy dispersion Eb

for curve a my=mz ¼ 0, b my=mz ¼ 0:4, and c my=mz ¼ �0:4.

Right panel: �Sð�Þ in N/FI/S junctions. Curve A represents eV ¼
0:2�, my ¼ 0:4mz, B eV ¼ �0:2�, my ¼ 0:4mz, C eV ¼ 0:2�,

my ¼ �0:4mz, and D eV ¼ �0:2�, my ¼ �0:4mz. In all

curves, we choose mzd=vF ¼ 1 and �=mz ¼ 1.

FIG. 4 (color online). Contour plot of CMM energy level EJ as
a function of � and ’ for (a) mx ¼ 0, (b) mx ¼ 0:4mz,
(c) mx ¼ �0:4mz. The resulting Josephson current in S/FI/S
junctions is plotted in (d) with curve a representing mx=mz ¼ 1,
b mx=mz ¼ 0:4, and c mx=mz ¼ �0:4. In all panels, we choose
mzd=vF ¼ 1, �=mz ¼ 1, and my=mz ¼ 0. T ¼ 0:05TC with

transition temperature TC.

FIG. 2 (color online). Left panel: CMM energy dispersion Eb

as a function of the incident angle �. Right panel: Normalized
tunneling conductance � in N/FI/S junctions. mzd=vF ¼ 1 and
my=mz ¼ 0. Curve a represents �=mz ¼ 1, b �=mz ¼ 2, and

c �=mz ¼ 0:5.
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stand the � and ’ dependence of �Eb (EJ) more intuitively,
we plot EJ (absolute value of �Eb) in Fig. 4. EJ is an even
function of � for anymx. Formx ¼ 0, EJ is symmetric with
respect to ’ ¼ 0 [Fig. 4(a)]. However, for mx � 0, the
resulting EJ is no more symmetric around ’ ¼ 0 as shown
in Figs. 4(b) and 4(c).

Differently from � for the Andreev reflection, mx seri-
ously influences I as the effective vector potential which
directly enters into the phase of the Josephson coupling ’.
Here, the absence of the small factor of e=c, which reduces
the coupling to the magnetic field, makes the tuning of the
current-phase relation much easier. Reflecting the ’ de-
pendence of EJ, the resulting I becomes zero at neither
’ ¼ 0 nor ’ ¼ �� [curves b and c in Fig. 4(d)] due to the
presence of the phase shift 2�. Up to now, there have been
many studies about the Josephson current in ferromagnet
junctions [20], where the value of phase shift becomes
neither 0 nor � in the usual cases. The intermediate phase
shift has been predicted in a few cases even in the ab-
sence of a Majorana fermion: (i) a spin-singlet-s-wave–
spin-triplet-superconducting junction [21]; (ii) an even-
frequency–odd-frequency junction [22]; and (iii) a ferro-
magnet junction with a spin-singlet s-wave superconductor
in the presence of the spin-flip scattering or spin-orbit
coupling [23,24]. It is remarkable that this anomalous
current-phase relation appears by simply controlling one
magnetization vector without using unconventional pairing
in the present model. It is also noted that the resulting
current-phase relation can be continuously tuned by the
change of mx similar to the control of the magnetization
vectors at the interfaces of the ferromagnet junction [23].
We hope this anomalous current-phase relation will be
detected experimentally in SQUID.

In conclusion, we have studied the charge transport
properties of the N/FI/S junction and S/FI/S junction
formed on the surface of a three-dimensional (3D) topo-
logical insulator, where the CMM exists at the FI/S inter-
face. We have found that CMMs generated in N/FI/S and
S/FI/S junctions are controlled by the direction of the
magnetization m in the FI region very sensitively. Since
the metallic surface state of a 3D topological insulator has
been observed experimentally, our proposed structure will
be accessible in the near future [25]. Our results provide
guidance for innovating a novel direction for supercon-
ducting spintronics.
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No. 19048015, and No. 19048008 from MEXT, Japan, and
NTT basic research laboratories. T. Y. acknowledges sup-
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Note added.—After submission of this Letter, the
Majorana fermion in the superconductor/ semiconductor
heterostructure was predicted in the presence of the inter-
play of the spin-orbit coupling and exchange field [26].
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