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Electron-Energy-Loss Spectra of Plasmonic Nanoparticles
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We investigate electron-energy-loss spectroscopy (EELS) on metallic nanoparticles, through simula-
tions, and provide a comprehensive comparison between EELS and the photonic local density of states
(LDOS). Most importantly, we show that there is no direct link between EELS and LDOS maps, and that
EELS can even be blind to hot spots in the gap between coupled nanoparticles. Although intimately
related, the two quantities provide complementary information. This finding is in marked contrast to

recently reported results.
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Electron-energy-loss spectroscopy (EELS) in combina-
tion with scanning transmission electron microscopy is
emerging as a novel characterization tool in plasmonics
[1-4]. The high spatial resolution of electron-based mi-
croscopy together with the improved energy resolution in
the sub-eV range render EELS ideal for the study of plas-
monics structures, with possible applications for optical
data processing, negative refraction, or biosensors [5,6].

A drawback of the technique has so far been the lack of a
consistent interpretation of experimental EELS data.
Although the theoretical description of EELS on metallic
nanoparticles is well established [7], it is less obvious how
to interpret the results and, most importantly, how to relate
them to the information extracted from optical experi-
ments. As a first step in this direction, Garcia de Abajo
and Kociak [8] recently established a rigid relation be-
tween EELS and a generalized density of states. Using
computer simulations, the authors speculated that this
quantity might render directly the photonic local density
of states (LDOS), which plays a crucial role for the optical
properties of plasmonic nanoparticles [9].

In this Letter we reconsider EELS on flat metallic nano-
particles, such as those typically produced with electron
beam lithography, and provide a comprehensive compari-
son between EELS and the photonic LDOS. Most impor-
tantly, we clearly demonstrate that there are marked
differences between EELS and LDOS maps. We show
that an electron beam couples differently to the surface
plasmons than a dipole, and thus there exists no clear-cut
relation between EELS and LDOS. For coupled nanopar-
ticles, EELS turns out to be blind to the hot spots in the gap
region between particles.

Photonic local density of states.—A dipole radiator, such
as a molecule, provides a direct probe of the photonic
LDOS [9]. When it is placed in the vicinity of a metallic
nanoparticle, the modified dielectric environment enhan-
ces the radiative and nonradiative decay rates, which can
be computed from the Fermi golden rule expression [10]
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Here d is the dipole moment and E(rg,, ) is the electric
field at the position rg;, of the molecule and at the transition
frequency w (we use SI units throughout). Equation (1)
describes a process reminiscent of a self-energy, where the
dipole induces an electric field which acts back on the
dipole itself. The real part of this coupling is associated
with an energy renormalization, usually referred to as the
Lamb shift, and the imaginary part accounts for the damp-
ing of the dipole excitation. We can use the dyadic Green
function to relate the field to the dipole source viz.

E(r, w) = 0*noG(r, rgp o) - d. ()

Upon insertion of this expression into Eq. (1), we obtain
the relation [9]
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between the dipole scattering rate I'yj, and the photonic
local density of states
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Here 7 is the unit vector pointing in the direction of the
dipole. Usually one does not keep in p,(r, ) the direction
dependence of the dipole, but averages over all direction
angles instead [8]. The resulting expression then accounts
for the local density of electromagnetic modes to which a
dipole can couple. The higher the mode density, the faster
the dipole will decay.

Electron-energy-loss spectroscopy.—An electron beam,
where the electrons possess kinetic energies in the 100 keV
range, provides an alternative probe for the dielectric en-
vironment of metallic nanoparticles. When passing by or
through the nanoparticle, the electrons can excite surface
plasmons and lose energy, which is subsequently moni-
tored. By raster scanning the electron beam over the sam-
ple, one obtains a direct map of the electromagnetic
environment. For sufficiently small particles we can em-
ploy the quasistatic approximation, where retardation ef-
fects due to the finite speed of light are neglected and only
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the frequency dependence of the dielectric response func-
tion is considered.

The charge distribution of the electron beam propagat-
ing with velocity v along z is given by pg = —eS(R —
R))6(z — vi). Here, e is the modulus of the electron
charge, R = (x,y) and z are, respectively, the position
components perpendicular and parallel to the beam axis,
and R, = (xg, yo) is the 2D impact parameter of the elec-
tron trajectory. Its Fourier transform in time
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corresponds to a charge distribution which oscillates along
z. This form is due to the change of the reference frame
underlying the Fourier transform. In the time domain, the
electron beam interacts with a surface plasmon oscillating
in time. In frequency space, the surface plasmon oscillation
becomes frozen, and this frozen charge distribution now
interacts with a periodically modulated p,(r, @) of the
electron beam (with wave number w/v).

Again we encounter a process reminiscent of a self-
energy, where the electron beam induces charge oscilla-
tions on the metallic nanoparticle, which produce an elec-
tromagnetic field that acts back on the electron beam. The
induced potential can be computed by means of the elec-
trostatic Green function [11]
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where r has to be evaluated along the trajectory of the
electron. Here G4 is that part of the Green function
associated with the metallic nanoparticle only. The total
energy loss is given by the work done against the field,
which is induced by the excited surface plasmons. This
results in a loss probability I'gg; s(R, @) for an energy loss
hw of the form [12]
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Thus, the energy loss probability is given by the average
value of the imaginary part of the induced interaction.
Equation (7) relates the EELS rate to the Fourier trans-
form of the Green function Giq(Ry, Ry, 2,7, w). In a
similar manner, one can relate I'gg; g to the Fourier trans-
form of the z component of the dyadic Green tensor,
G (Ro, Ry, z, 7/, ). This latter relation also holds for
the solution of the full Maxwell equations, beyond the
quasistatic limit, and is particularly useful for establishing
a formal connection between EELS and LDOS [8].
Eigenmode expansion.—We next show that an electron
beam interacts with the metallic nanoparticle in a distinctly
different manner than a dipole. We consider the situation
where the nanoparticle, described by a local and homoge-

neous dielectric function €,,(w), is embedded in a back-
ground with dielectric constant €,. The solution of the
electrostatic problem is then provided by the free-space
Green function G(r, r') = 1/(47|r — r'|) together with a
surface charge o (s, w) located at the boundary 9} of the
metallic nanoparticle. The potential is given by

$(r, w) = [ G(r. s)o(s', 0)dd' + og(r, @), (8)
€y JoQ

where the first and second term on the right-hand side
account for the induced and external potential, respec-
tively. The surface charge o is obtained from the require-
ment that the normal component of the dielectric
displacement is continuous across the boundary.
Introducing the surface derivative F of the Green function,
we get [13]
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which allows us to compute the surface charge for the
external excitation of a dipole or electron beam. The last
term on the right-hand side denotes the surface derivative
of d)exl’ and A(w) = E[em(w) - eb]/[em(w) + eb]'
Equation (9) can be formally solved through the eigen-
values A; and right eigenvectors o(s) of F, which, to-
gether with the left eigenvectors &(s), form a complete
biorthogonal set [14]. Multiplying Eq. (9) from the left
with ¢ and integrating over the particle surface, we obtain

n = JGr s)o(s)da [ & (s")F(s', r')da’
Gina(r, 1) = % AMw) — A

(10)

for the induced potential at position r, which originates
from a unit charge located at position /. The integral with
G describes how the surface plasmon mode  is excited by
the electric field of the unit charge, located at position r/,
and the integral with o, accounts for the potential, at
position r, which in turn is induced by the plasmon. The
plasmon resonances are associated with those frequencies
o where the denominator becomes small.

The EELS rate is obtained by inserting Eq. (10) into
Eq. (7). Let us consider the case of flat nanoparticles,
where the inverse of the wave number ¢ = w/v is much
larger than the nanoparticle size. Indeed, for a typical
kinetic electron energy of 100 keV and an energy fiw =
1 eV we obtain A = 27/q ~ 700 nm, which is signifi-
cantly larger than typical nanoparticle dimensions of sev-
eral tens of nanometers. The charge distribution of Eq. (5),
through which the surface plasmons are excited, has there-
fore approximately the form of a charged wire, which is
oriented along the direction z of the electron beam. The
resulting dependence of the potential on the lateral distance
p between electron beam and nanoparticle is of the form
Inp, rather than the usual 1/p dependence of a point

106801-2



PRL 103, 106801 (2009)

PHYSICAL REVIEW LETTERS

week ending
4 SEPTEMBER 2009

charge. For this reason, one readily appreciates that EELS
probes the surface plasmon differently than a point charge.
The same reasoning applies to a dipole probe, which
measures the photonic LDOS and has a 1/p? distance
dependence. Thus, the relation between EELS and LDOS
is at best qualitative, but there is no direct link between the
two quantities.

Simulation results.—To investigate the qualitative cor-
respondence between EELS and LDOS, we additionally
performed simulations using the boundary element method
approach [10,13]. Figure 1(a) shows a simulated EELS
map for an elongated, disk-shaped metallic nanoparticle,
together with the LDOS, the LDOS projected along z, p.,
and the potential given by the imaginary part of
Gina(R, R, 7, 7, w). All quantities are computed in the sym-
metry plane of the particle and at the photon energy of the
dipole plasmon mode. Apparently, neither the angle-
averaged LDOS nor the LDOS projected along z resemble
the EELS map. The only similarity is between EELS and
potential. When we move away from the particle, Fig. 1(b),
we find that the EELS map is similar to the potential and
LDOS in planes 20 and 40 nm above the particle. Similar
conclusions hold for the quadrupole plasmon mode shown
in Figs. 1(c) and 1(d).

In Fig. 2 we investigate the case of two coupled nano-
particles. The surface plasmons of lowest energy corre-
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FIG. 1 (color online). EELS, LDOS, and potential maps for a
metallic nanoparticle with a long axis of 70 nm, an axes ratio of
6:3:1, and at 1.6 and 2.1 eV photon energies corresponding to the
surface plasmon modes of lowest energy. (a) EELS, LDOS, and
potential at the photon energy of the dipolar plasmon mode,
computed in the symmetry plane of the nanoparticle, and (b) 20
and 40 nm above. (c¢),(d) Same as (a),(b) but at the energy of the
quadrupole plasmon mode. On the surface of the metallic nano-
particle, we show the surface charge distribution of the corre-
sponding surface plasmon modes. In (a) and (c) we plot the
potential and LDOS (in units of its free-space value) in a
logarithmic scale and use a linear scale normalized to the
maximum value otherwise. In all simulations we use for
€,,(w) a gold dielectric function [16] and set €, = 2.25. The
electron beam is assumed to have a kinetic energy of 100 keV.

spond to bonding and antibonding modes, where the dipole
moments of the two particles are oriented, respectively,
parallel and antiparallel to each other. Again, EELS and
LDOS strongly differ in the symmetry plane of the nano-
particles. This is seen most strikingly at the “‘hot spot™ in
between the two particles. For the bonding mode in 2(a),
the LDOS is very high in the region between the two
particles. This is due to the strong fields in the gap region
associated with the bonding surface plasmon mode. In
contrast, EELS is completely blind to the hot spot. The
situation is reversed for the antibonding mode. Here, the
LDOS drops at the center point, due to the vanishing field
of the antibonding plasmon mode (note that the dipole still
couples to other modes, thus keeping the LDOS finite),
whereas the EELS rate has a pronounced maximum in
between the two particles. Once again we find that the
projected LDOS and potential qualitatively resemble the
EELS maps in a plane above the nanoparticle, as shown in
the lower panels of Fig. 2.

Discussion—Why do EELS and LDOS differ so
strongly in the vicinity of the nanoparticle? To under-
stand this, in the following we analyze the EELS rate in
more detail. We replace the upper and lower integration
limits in the double integral of Eq. (7) by some cutoff
value z, and plot in Fig. 3(a) the incremental EELS rate
Ol gprs(Ry, w;z)/9z (averaged over all beam positions
R,), which provides a measure of large integrand regions.
One observes that the maximum of the integrand is ap-
proximately 20 nm above the nanoparticle. A similar
analysis can be made for the relation between EELS and
LDOS, by replacing in Eq. (7) the Green function G;,q with
the dyadic Green function G, [8]. Figure 3(a) shows that
in this case the maximum of the integrand is shifted to a
distance of about 50 nm. This is a counterintuitive result, as
one would expect that a dipole (corresponding to G:%,)
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FIG. 2 (color online). Same as Fig. 1 but for coupled nano-
particles, and for (a)-(c) bonding surface plasmon mode
(1.57 eV) and (d)—(f) antibonding mode (1.66 eV). Panels (a)
and (d) show EELS and LDOS in the symmetry plane of the
particle. The other panels report results for the potential and the
projected LDOS in planes 20 and 40 nm above the particles.
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FIG. 3 (color online). Incremental EELS rate, as defined in
text, for single nanoparticle depicted in Fig. 1 and at (a) dipole
and (b) quadrupole surface plasmon energy. (c),(d) z value where
incremental EELS rate is maximal for electrostatic (G) and
dyadic (G%) Green function. For the coupled particles (d), we
do not show the results for points with too small EELS rates
(indicated with arrows).

couples more strongly to the surface plasmons closer to the
nanoparticle than a point charge (corresponding to Gj,q).
The reason why the integrand with the dyadic Green
function G{%; does not contribute for small z values is due
to interference. Recall that the dyadic Green function
describes a process where a dipole at position z induces a
surface plasmon that acts back on a dipole at position 7/, as
schematically shown in the inset of 3(b). The surface
plasmon is induced such that the resulting electric field
causes an energy loss of the oscillating dipole, correspond-
ing to a positive LDOS. In contrast, a dipole at the mirror
position —z will gain energy because it is driven with
opposite phase. When performing an integration along z,
as in the expression for the generalized LDOS, there will be
an almost complete cancellation of these interactions with
opposite signs. The magnitude of p_.(R, g, ®) is thus de-
termined by the asymptotic regions rather than those with a
high LDOS. This explains why the LDOS close to the
nanoparticle is totally unrelated to the EELS map. As no
corresponding cancellation occurs in the case of the
electrostatic Green function Gj,4, due to the underlying
monopole-type coupling, the correspondence between
EELS and potential appears to be the more natural one.
We also found that for d1'gg; s(Ry, @; z)/dz the maxima
are at smaller z values when R, is located closer to the
nanoparticle, as shown in Figs. 3(c) and 3(d). This is
because close to the particle the electron beam interacts
with the evanescent fields of the surface plasmons, and the
interaction is bound to a small z region, whereas farther
away the beam interacts over a longer distance with the

more extended field components. For this reason, there
exists no ‘“‘optimal” distance for the calculation of the
potential or LDOS maps. Indeed, we found that any quan-
titative comparison between EELS and LDOS maps is
doomed to failure [15].

In conclusion, we have investigated the relation between
LDOS and EELS for flat metallic nanoparticles. We have
shown that an electron beam and a dipole couple differ-
ently to the surface plasmons, and there exists no direct
quantitative connection between EELS and LDOS,
although the qualitative agreement is often fairly good.
EELS has been shown to be blind to hot spots in the gap
region between coupled nanoparticles. Electron-energy-
loss spectroscopy is expected to become a highly powerful
tool for the characterization of plasmonic devices, but care
has to be taken in the proper interpretation of the experi-
mental data.

*http://nanooptics.uni-graz.at

[11 N. Yamamoto, K. Araya, and F.J. Garcia de Abajo, Phys.
Rev. B 64, 205419 (2001).

[2] J. Nelayah, M. Kociak, O. Stephan, F.J. Garcia de Abajo,
M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos,
L.M. Liz-Martin, and C. Colliex, Nature Phys. 3, 348
(2007).

[3] B. Schaffer, U. Hohenester, A. Triigler, and F. Hofer, Phys.
Rev. B 79, 041401(R) (2009).

[4] J. Nelayah, L. Gu, W. Sigle, C.T. Koch, I. Pastoriza-
Santos, L.M. Liz-Martin, and P.A. van Anken, Opt.
Lett. 34, 1003 (2009).

[5] E. Orzbay, Science 311, 189 (2006).

[6] H. Atwater, Sci. Am. 296, No. 4, 56 (2007).

[7] A. Rivacoba, N. Zabala, and J. Aizpurua, Prog. Surf. Sci.
65, 1 (2000).

[8] F.J. Garcia de Abajo and M. Kociak, Phys. Rev. Lett. 100,
106804 (2008).

[9] L. Novotny and B. Hecht, Principles of Nano-Optics
(Cambridge University Press, Cambridge, England, 2006).

[10] U. Hohenester and A. Triigler, IEEE J. Sel. Top. Quantum
Electron. 14, 1430 (2008).

[11] J.D. Jackson, Classical
New York, 1999).

[12] N. Zabala and A. Rivacoba, Phys. Rev. B 48, 14534
(1993).

[13] F.J. Garcia de Abajo and A. Howie, Phys. Rev. B 65,
115418 (2002).

[14] I.D. Mayergoyz, D.R. Fredkin, and Z. Zhang, Phys.
Rev. B 72, 155412 (2005).

[15] Our results would not be significantly modified if retarda-
tion effects were considered, in agreement with the con-
clusions of Ref. [7]. Additional calculations (not shown)
based on the full Maxwell equations revealed very similar
results, with the main difference that the plasmon reso-
nances are shifted slightly to the red.

[16] P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370
(1972).

Electrodynamics  (Wiley,

106801-4



