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We investigate theoretically spin relaxation in heavy-hole quantum dots in low external magnetic fields.

We demonstrate that two-phonon processes and spin-orbit interaction are experimentally relevant and

provide an explanation for the recently observed saturation of the spin-relaxation rate in heavy-hole

quantum dots with vanishing magnetic fields. We propose further experiments to identify the relevant

spin-relaxation mechanisms in low magnetic fields.
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In the last decade, remarkable progress has been made in
the manipulation and control of the spin of electrons con-
fined in semiconducting nanostructures such as quantum
dots (QDs) [1]. These achievements pave the way toward
quantum spin electronics and may lead to spin-based quan-
tum computing [2]. In the past years, a new candidate for a
qubit state has been attracting growing interest: the spin of
a heavy hole (HH) confined in a flat QD. In a bulk semi-
conductor the HH (Jz ¼ �3=2) and light hole (LH) (Jz ¼
�1=2) bands are degenerate giving rise to strong mixing
and thus to strong HH-spin relaxation. However, in a 2D
system the HH and LH bands are split due to the strong
confinement along the growth direction [3] implying a
significant reduction of the HH spin relaxation via HH-
LH mixing.

A basic requirement for a good qubit is that it can be
initialized in a given state (say, spin up) and that the
relaxation and decoherence times be much longer when
compared to the switching times for single- and two-qubit
operations. The spin of a HH localized in a quantum dot
has been successfully initialized [4], and the relaxation
time has been measured [4,5], and found to be on the order
of 100 microseconds. The relaxation (T1) and decoherence
(T2) times of a HH spin localized in a flat QD are, like for
electrons, determined by the interaction of the HH with the
nuclear spin bath in the QD and the lattice vibrations
(phonons). The former interaction is weaker for HHs
than for electrons (due to the p symmetry of the hole)
[6,7]. More importantly, it is of Ising type, making it
ineffective for HH spins initialized along the growth direc-
tion [6], as typically done in experiments [4], thus implying
very long dephasing times. This is in contrast to electrons,
where the hyperfine interaction is isotropic and dominates
the spin dynamics at low B fields [8–11].

Phonons couple to the HH spin through the spin-orbit
interaction (SOI) [12]. The predicted values [12] for the
one-phonon induced relaxation time T1 agree quite well
with data obtained in high B fields [5]. However, for low B
fields (B� 1:5–3 T) and high temperatures (T > 2 K), a
clear deviation from the one-phonon theory has been ob-
served [5]. Furthermore, recent experiments on optical

pumping of HH spins in QDs showed saturation of T1 for
very low or even vanishing B field [4]. The relaxation time
was found to be unusually long, T1 � 0:1–1 ms, like pre-
viously observed in high B fields [5]. Both observations
suggest other sources of relaxation, and the question arises
what are they and what are their observable consequences?
The answer to this question is not only interesting by itself
but also relevant for using HHs as qubits. In the following,
we show that two-phonon processes are good candidates
and even provide a quantitative explanation of the men-
tioned measurements at low B fields [4,5]. The importance
of such two-phonon processes was noticed a long time ago
for electron spins in silicon-donors [13] and rare-earth ions
[14], while for electrons in QDs it was shown that these
processes are negligible compared to nuclear spin effects
[15].
To describe a HH confined to a QD and interacting with

the surrounding phonon bath, we start with the following
Hamiltonian

Hh ¼ H0 þHZ þHSO þHh-ph þHph; (1)

where H0 ¼ p2=2mh þ VðrÞ, is the dot Hamiltonian,
VðrÞ � mh!

2
0r

2=2 is the confinement potential which is

assumed to be harmonic, with mh being the HH mass. The
second term in Eq. (1) is the Zeeman energy of the HH
(pseudo-) spin HZ ¼ g�BB � �=2, with B being the mag-
netic field and � the Pauli matrices for the HH spin defined
in the Jz ¼ �3=2 subspace. The third term represents the
spin-orbit Hamiltonian, which, for well separated HH-LH
bands (flat dots), reads [12]

HSO ¼ �p�pþp��þ þ H:c: (2)

This Hamiltonian represents the effective Dresselhaus SOI
(restricted to the HH subspace) due to bulk inversion
asymmetry of the crystal [12], where p� ¼ px � ipy, p ¼
�i@r� eAðrÞ, AðrÞ ¼ ð�y; x; 0ÞB=2, and �� ¼
�x � i�y. We note that in Eq. (2) we have neglected the

Rashba SOI and other possibly linear-in-k but small SOI
terms [12]. The fourth term in Eq. (1) represents the
interaction of the HH charge with the phonon field, i.e.
Hh-ph ¼ P

qjMqjXqj with

PRL 103, 106601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

0031-9007=09=103(10)=106601(4) 106601-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.106601


Mqj ¼ FðqzÞeiq�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�c!qj

p ½e�qj � ið�0q � dqj ��zqzd
z
qjÞ�; (3)

and Xqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=!qj

q
ðay�qj þ aqjÞ, where q is the phonon

wave vector, with j denoting the acoustic branch, !qj ¼
cjq the phonon energy, with cj the speed of sound in the jth

branch, dqj the polarization unit vector, �c the sample

density (per unit volume), and e�qj the piezoelectric

electron-phonon coupling and �0;z the deformation poten-

tial constants [12]. The form factor FðqzÞ in Eq. (3) equals
unity for jqzj � d�1 and zero for jqzj 	 d�1, with d being
the dot size in the (transverse) z direction. The last term in
Eq. (1) describes the free phonon bath.

In the following, we analyze the effect of the phonons on
the HH spin. The phonons do not couple directly to the
spin, but the SOI plays the role of the mediator of an
effective spin-phonon interaction. Let us define the dot
Hamiltonian Hd � H0 þHZ þHSO. These eigenstates
jn�i of Hd are formally connected to the eigenstates
jnij�i of H0 þHZ by an exact Schrieffer-Wolff (SW)
transformation [16,17], i.e., jn�i ¼ eSjnij�i, where S ¼
�Sy is the SW generator and can be found in perturbation
theory in SOI. After this transformation, any operator A in

the old basis transforms as A ! eA ¼ eSAe�S in the new

basis (e.g., Hd ! eHd, Hh-ph ! eHh-ph, etc.).

In order to derive the effective spin-phonon interaction,
we perform another SW transformation of the total HH

Hamiltonian eHh. We get an effective Hamiltonian Heff ¼
eT eHhe

�T , where T ¼ �Ty is chosen such that it diago-

nalizes eHh-ph in the eigenbasis of Hd. In lowest order in

Hh-ph, we obtain T � eL�1
d

eHh-ph, where the Liouvillean is

defined as eLdA ¼ ½ eHd; A�, 8 A, and diagonal terms of
Hh-ph are to be excluded. In 2nd order in Hh-ph, we obtain

then the effective spin-phonon Hamiltonian

Hs-ph ¼ � � X
qj;q0j0

½�qj;q0j0C
ð1Þ
qj Xqj þ Cð2Þ

qj;q0j0XqjXq0j0

þ Cð3Þ
qj;q0j0 ðPqjXq0j0 � Pq0j0XqjÞ�; (4)

with � � Cð1Þ
qj ¼ h0j eMqjj0i, � � Cð2Þ

qj;q0j0 ¼ h0j½ eL�1
d

eMqj;eMq0j0 �j0i, � � Cð3Þ
qj;q0j0 ¼ h0j½eL�1

d
eMqj; eL�1

d
eMq0j0 �j0i, Pqj ¼

i
ffiffiffiffiffiffiffiffiffiffi
@!qj

p ðay�qj � aqjÞ is the phonon field momentum opera-

tor, and j0i is the orbital ground state. In Eq. (4) we have
neglected 2nd order corrections in SOI to the energy levels.
Note that for vanishing magnetic field B ! 0 only the last
term in Hs-ph is nonzero, since only this one preserves

time-reversal invariance and thus gives rise to zero field
relaxation (ZFR) [13–15].

We now assume the orbital energy @!0 is much larger
than the SOI, i.e., kH0k 	 kHSOk, and treat the SOI to
leading order in perturbation theory. We consider also the
B field to be applied perpendicularly to the dot plane (as in
Refs. [4,5]). The SW-generator S can be written as S ¼

Sþ�� � H:c:, and we then find

Sþ¼A1pþp�pþþA2½pþp�Pþ�ðpþP��Pþp�Þpþ�
þA4PþP�PþþA3½ðpþP��Pþp�ÞPþþPþP�pþ�:

(5)

Here, Ai � Aið!Z;!cÞ with !Z ¼ g�BB=@ and !c ¼
eB=2c. For !Z, !c � !0, we obtain A1 � �ð7�=9@Þ

½ð!Z þ!cÞ=!2

0�, A2 � �ð�=3@Þð!c=!
2
0Þ, A3 �

�ð2�=9@Þ½!2
cð!c þ!ZÞ=!4

0�, and A4 � ð2�=3@Þ

ð!3

c=!
4
0Þ, while P� ¼ Px � iPy with PxðyÞ ¼ �i@rxðyÞ �

ðmh!
2
0=!cÞyðxÞ. After somewhat tedious calculations, we

obtain analytic expressions for CðiÞ ¼ ðCði;xÞ; Cði;yÞ; 0Þ oc-
curring in Eq. (4). We give below only the exact expression
for i ¼ 3, the rest being too lengthy to be displayed here:

Cð3;x=yÞ
qj;q0j0 ¼ �Mq0j0

qj

mh�
2
d�e

�q2�2
d
=4

3@!2
0

F ðq � q0Þ


 ½q2yq0x � q02y qx � ðqx � q0xÞð2qyq0y þ 3qxq
0
xÞ�;
(6)

where

F ðq � q0Þ ¼ 1

�2
dðq � q0Þ2

ðe��2
d
q�q0=2 � �2

dq � q0=2Þ½�

þ logð�2
dq � q0=2Þ þ �ð0; �2

dq � q0=2Þ�: (7)

Here, Mq0j0
qj ¼ ðFðqzÞFðq0zÞ@=2�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!qj!q0j0

p Þð�0q � dq;j �
�zqzd

z
qjÞð�0q

0 � dq0j0 ��zq
0
zd

z
q0j0 Þ, where �d is the dot

diameter. We have also introduced � � 2:17 the Euler
constant and �ðs; xÞ the incomplete gamma function. We

note that Cð1;2Þ / B, so that these two terms vanish with
vanishing B field.
Let us now analyze the relaxation of the spin induced by

all the phonon processes in the spin-phonon Hamiltonian in
Eq. (4). We first mention that all terms in Eq. (4) can be
cast in a general spin-boson type of Hamiltonian Hp

s-b ¼
ð1=2Þg�B�B

pðtÞ � �, p ¼ 1, 2, 3, with the corresponding
identification of the fluctuating magnetic field terms �BjðtÞ
from Eq. (4) (e.g., �B1ðtÞ � Cð1Þ

qj Xqj).

Within the Bloch-Redfield approach, the relaxation rate
� � 1=T1 can be expressed as � ¼ P

i¼x;y½JiiðEZ=@Þ þ
Jiið�EZ=@Þ�. The correlation functions Jij are defined

by Jijð!Þ ¼ ðg�B=2@Þ2
R1
0 dte�i!th�Bið0Þ�BjðtÞi, where

h� � �i denotes the average over the phonon bath, assumed
to be in thermal equilibrium at temperature T. The relaxa-
tion time associated with the three types of spin-phonon

processes in Eq. (4) is � ¼ P
i¼1;2;3�

ðiÞ with

�ð1Þ ¼ 4�

@

X
qj

jCð1Þ
qj j2

�
nð!qjÞ þ 1

2

�
�ðEZ � @!qjÞ;

�ðmÞ ’ 8�

@

X
qj;q0j0

jCðmÞ
qj;q0j0 j2ð!qj!q0j0 Þm�2nð!qjÞ


 ½nð!q0j0 Þ þ 1��ð@!qj � @!q0j0 Þ;

(8)
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where nð!Þ ¼ 1=½expð!=kBTÞ � 1� is the Bose factor and
m ¼ 2, 3 correspond to B-dependent and B-independent
two-phonon rates, respectively. We remark that in Eq. (8)
we have neglected some irrelevant processes in the limit of
low-B field [18]. Also, for B fields perpendicular to the dot
plane the decoherence time satisfies T2 ¼ 2T1 for one- and
two-phonon processes since the spin-phonon fluctuations
�Bj ? B [12,17].

Note that for two-phonon processes the single phonon
energies do not need to match the Zeeman energy sepa-
rately (as opposed to one-phonon processes), so that there
is only a weak dependence on the B field left which comes
from the effective spin-phonon coupling itself.

In Figs. 1 and 2, we plot the phonon spin-relaxation rate
� as a function of the B field and of temperature, respec-

tively, for InAs and GaAs quantum dots. Figure 1 shows a
clear saturation of � at low magnetic fields which is due to
two-phonon processes, while Fig. 2 shows the known
saturation at low temperatures due to one-phonon pro-
cesses [12].
For these plots, we used the following HH InAs QDs

(labeled by A) [19,20] and GaAs QDs (labeled by B)
parameters [12]: �0 ¼ 1:9 eV, �z ¼ 2:7 eV, cAt ¼
2:64
 103 m=s (cBt ¼ 3:35
 103 m=s), cAl ¼ 3:83

103 m=s (cBl ¼ 4:73
 103 m=s), �A

c ¼ 5:68

103 kg=m3 (�B

c ¼ 5:3
 103 kg=m3), mA
h ¼ 0:25me

(mB
h ¼ 0:14me), gA ¼ 1:4 (gB ¼ 2:5), and we assume

�d ¼ 3 nm (@!A
0 ¼ 35 meV, @!B

0 ¼ 60 meV) and d ¼
3 nm (dot height). Also, �A � 4:2
 1018m3=eV2s3 and
�B � 2
 1018m3=eV2s3. From Fig. 1 we can infer that
the two-phonon processes become dominant for magnetic
fields B< 2 T (B< 0:5 T) and for temperatures T > 2 K
(T > 3 K) for InAs (GaAs) QDs. These estimates for the
relaxation rates due to one- and two-phonon processes are
comparable to the ones recently measured in Refs. [4,5],
thus providing a reasonable explanation for these measure-
ments. Note that, in contrast to the HH case, the relaxation
time for electrons shows no deviation from the one-phonon
time (or saturation) with decreasing B field [21].
Next, we provide explicit expressions of the relaxation

rates for low and high temperature limits. The rates �ðiÞ can
be written as

�ðiÞ ¼ �i

Xri
m¼0

!ri�m
Z !m

c

!ri
0

FðmÞ
i ðtÞ; (9)

where �1 � 2�ð@4eh214�2=	2mh�
6
d�cc

5
l Þ, �2 �

�ðm4
h�

2�4
0=@

2�5
d�

2
cc

3
l Þ, �3 � �ðm6

h�
2�4

0=@
4cl�

3
d�

2
cÞ,

r1 ¼ 5, r2 ¼ 2, r3 ¼ 0, and t ¼ kBT=Eph with Eph �
@cl=�d.
The functions Fm

i ðtÞ depend on the ratios t ¼ kBT=Eph,

d=�, and cl=ct. In Table I we list the asymptotic (scaling)

expressions for FðmÞ
i ðtÞ in low B fields !c;Z � !0 for low

(t � 1) and high (t 	 1) temperatures. We note that

Fð1Þ
1 ðtÞ � Fð2Þ

1 ðtÞ in both regimes, and Fð3;4;5Þ
1 � 0.

Using Eq. (9) and Table I we can write for the two-
phonon rates, say, for InAs QDs

�ð2Þ ¼ �2

8<: 107ð10 !2
Z

!2
0

þ !Z!c

!2
0

þ 0:5 !2
c

!2
0

Þt13; t � 1

102ð!2
Z

!2
0

þ !Z!c

!2
0

þ 0:3 !2
c

!2
0

Þt2; t 	 1

�ð3Þ ¼ �3

(
109t15; t � 1

0:3t2; t 	 1
: (10)
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FIG. 1 (color online). The heavy-hole spin-relaxation rate �
for InAs QDs (GaAs QDs in the inset) as a function of magnetic
field B for different temperatures T. The solid lines represent the
rate due to one- and two-phonon processes, i.e., � ¼ P

3
i¼1 �

ðiÞ as
defined in Eq. (8) for different temperatures T, while the dotted
lines represent the one-phonon rate �ð1Þ.
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FIG. 2 (color online). The heavy-hole spin-relaxation rate � in
Eq. (8) for InAs QDs (GaAs QDs in the inset) as a function of
temperature T for different B-field values. For finite B field, �
saturates at low temperatures due to one-phonon processes.

TABLE I. The asymptotic values for FðmÞ
i ðtÞ.

Fð0Þ
1 Fð1Þ

1 Fð0Þ
2 ðtÞ Fð1Þ

2 ðtÞ Fð2Þ
2 ðtÞ F3ðtÞ

t � 1 0.004 0.015 108t13 107t13 5
 106t13 109t15

t 	 1 0:08 t
!Z

0:03 t
!Z

102t2 102t2 30t2 0:3t2
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From Eq. (10) we find that for T < 2 K and for B>
0:5 T the one-phonon processes dominate the relaxation
rate �. On the other hand, for low B fields (0:1 T<B<
1 T) and finite temperatures (T > 2 K) the two-phonon
processes will give the main contribution to �, see Fig. 2.
The main phonon processes could be identified experimen-
tally by analyzing the temperature dependence of �, scal-
ing as �� T for one-phonon processes and as �� T2 for
two-phonon processes. Also, the saturation of � in vanish-
ing B field is a clear indication of two-phonon processes.
Note that the strong enhancement of the two-phonon HH
spin relaxation arises because (i) the rate is 2nd order in
SOI (whereas for electrons it is 4th order) and (ii) the
effective mass for HHs is much larger than that for elec-
trons. Even more, the coupling of the phonon field to the
HH spin is qualitatively different compared to electrons
(in-plane coupling vs perpendicular-to-the-plane coupling)
allowing for a clear distinction between linear (electrons)
and cubic (holes) in momentum SOI via two-phonon re-
laxation processes.

In order to compute �ð2;3Þ, we took into account only the
contribution from the deformation potential since this
dominates the two-phonon relaxation for T=Eph > 0:1

and !Z, !c � !0. For the evaluation of �ð1Þ instead, we
considered both the piezoelectric and deformation poten-
tial contributions, both of them being important forB and T
considered here. Surprisingly, we found that the ZFR rate

�ð3Þ increases when decreasing the dot size as �ð3Þ � ��1
d ,

while the other two rates decrease with decreasing the dot

size as �ð1Þ � �4
d and �ð2Þ � �d. This behavior strongly

differs from the electronic case where the ZFR mechanism
is efficient for rather large dots [15].

Interestingly, the present results do not change much if
the B field is tilted with respect to the QD plane. The g
factor for HHs is strongly anisotropic with gk � g? so that

one can neglect the in-plane Zeeman splitting. This implies
performing the substitution !c;Z ! !c;Z cos
 in above

results, with 
 being the angle between the B field and
the z direction. This will lead to a reduction of the

B-dependent rates (�ð1;2Þ), while the ZFR (�ð3Þ) being
independent of B remains the same.

In conclusion, we have shown that two-phonon pro-
cesses give rise to a strong relaxation of the HH spin in a
flat quantum dot. This time is predicted to be in the milli-
second range, comparable to the one measured in recent
experiments on optical pumping of a HH spin in QDs [4].
Though other sources of relaxation are not excluded, a
careful scaling analysis of the measured relaxation time
with the magnetic field and/or the temperature should
allow one to identify the two-phonon process as the leading
relaxation mechanism for the heavy-hole spin localized in
small QDs.
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[15] P. San-José, G. Zarand, A. Shnirman, and G. Schön, Phys.

Rev. Lett. 97, 076803 (2006); P. San-José, G. Schön, A.
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