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We perform a detailed quantum dynamical study of nonequilibrium Josephson oscillations between

interacting Bose-Einstein condensates confined in a finite-size double-well trap. We find that the

Josephson junction can sustain multiple undamped Josephson oscillations up to a characteristic time

scale �c without quasipartcles being excited in the system. This may explain recent related experiments.

Beyond a characteristic time scale �c the dynamics of the junction is governed by fast, quasiparticle-

assisted Josephson tunneling as well as Rabi oscillations between the discrete quasiparticle levels. We

predict that an initially self-trapped state of the Bose-Einstein condensates will be destroyed by these fast

dynamics.
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One of the striking manifestations of quantum mechan-
ics on a macroscopic level is the particle current induced
by the phase difference between two coherent wave func-
tions connected by a weak link, known as the Josephson
effect [1]. For tunneling between the macroscopic wave
functions of two Bose-Einstein condensates (BECs)
trapped in a double-well potential this phenomenon leads
to temporal oscillations of the population imbalance z
between the two condensates even in the ground state
[2,3]. However, unlike in superconducting Josephson junc-
tions, the interaction between the atoms in the condensates
gives rise to regimes of fundamentally new dynamical
behavior. If the initial population imbalance exceeds a
critical value depending on the interaction strength, the
large-amplitude Josephson oscillations (delocalized re-
gime) cease, and the BEC is trapped in one of the two
wells with only small-amplitude oscillations of z about the
nonzero mean value (self-trapped regime). This complex,
nonlinear dynamics has been theoretically predicted for the
ground state [4–6] and experimentally observed recently
[7]. It is not only interesting in its own right but also
relevant for any merging process of BECs, e.g., for quan-
tum engineering or for producing a continuous source of
condensed atoms [8,9].

In the recent experiment [7] the Josephson junction is
prepared in a nonequilibrium situation by ramping up the
barrier between the condensates suddenly, in a nonadia-
batic way. For this case an immediate damping of the
Josephson oscillations has been predicted due to quasipar-
ticle excitations [10], which is, however, not observed in
the small traps of Ref. [7], revealing an incomplete under-
standing of the nonequilibrium dynamics.

In this Letter we present a detailed study of the temporal
nonequilibrium dynamics of Josephson-coupled BECs
after nonadiabatically switching on the Josephson cou-
pling, including interatomic interactions as well as quasi-
particle (QP) excitations. As the main result we find that in
small traps multiple, undamped Josephson oscillations are

possible up to a time scale �c. At this time scale the
dynamics switches abruptly but continuously from slow
Josephson to fast Rabi oscillations between the discrete QP
levels. We also predict that the self-trapped behavior is
destroyed by the Rabi oscillations, i.e., for time t > �c the
system switches to delocalized behavior, if it has previ-
ously been in a self-trapped state. This highly nonlinear
behavior results essentially from a separation of energy
scales in small traps with discrete QP level spacing �,
which can be chosen larger than J. Switching on J lowers

the ground state energy by the amount �E ¼
J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1ð0ÞN2ð0Þ

p
, where N1ð0Þ, N2ð0Þ are the occupation

numbers of the two BECs in the initial state at time T ¼
0. Thus, after a sudden switching, two initially separated
BECs are in an excited state �E above the coupled ground
state. Because of the large values of N1, N2, this energy is
sufficient to excite QPs out of the BECs. The time-
dependent BEC amplitude acts as a perturbation on the
QP system. However, transitions to QP states are not
allowed in perturbation theory, because the frequency of
the oscillations is less than their excitation energy, J <�.
Our detailed calculations show that such transitions are
only possible as a highly nonlinear process after the char-
acteristic time �c.
We consider a Bose-Einstein condensed atomic gas in a

double-well trap as represented by Fig. 1. Such a system is
most generally described by the Hamiltonian

H ¼
Z

d3r�̂yðr; tÞ
�
� 1

2m
�þ Vextðr; tÞ

�
�̂ðr; tÞ

þ g

2

Z
d3r�̂yðr; tÞ�̂yðr; tÞ�̂ðr; tÞ�̂ðr; tÞ;

(1)

where �ðr; tÞ is a bosonic field operator, and we assume a
contact interaction between the bosons with g ¼ 4�as=m
(as is the s-wave scattering length). Vext is the external
double-well trapping potential. Initially, the barrier be-
tween the two wells is assumed to be infinitely large, so
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that Josephson tunneling is absent. All bosons are con-
densed, and both condensates are in the equilibrium state.
At time t ¼ 0 the barrier is suddenly lowered so that a
Josephson weak link is established between the wells. This
nonadiabatic process drives the system out of thermody-
namic equilibrium.

In order to develop the general nonequilibrium theory
for this system and to analyze its dynamics, we wish to
represent the Hamiltonian (1) in the complete basis of the
exact single-particle eigenstates of the double-well poten-
tial Vextðr; t > 0Þ after switching on the coupling J. In this
basis the field operator reads,

�̂ðr; tÞ ¼ �1ðrÞa1ðtÞ þ�2ðrÞa2ðtÞ þ
X
n�0

’nðrÞb̂nðtÞ; (2)

where �1ðrÞ, �2ðrÞ are the respective ground state wave
functions of the two wells after lowering the barrier, and
the a� are the corresponding, time-dependent condensate

amplitudes (c-numbers), a�ðtÞ ¼
ffiffiffiffiffiffiffi
N�

p
ei��ðtÞ, � ¼ 1, 2.

This semiclassical treatment of the BECs neglects phase
fluctuations. It is justified for the experiments [7], where
the BECs are initially produced with fixed phase relation
and the particle number is sufficiently large. The applica-
bility of the semiclassical approximation has been dis-
cussed in detail in Refs. [10–13] and has been tested
experimentally in Ref. [14]. The quasiparticle dynamics
will be treated fully quantum mechanically. The index n �
0 enumerates the exact single-particle excited states, with

’nðrÞ and b̂nðtÞ the corresponding eigenfunctions and bo-
sonic destruction operators, respectively. Note that by in-
cluding excited states we go beyond the frequently used
two-mode approximation [4,9] for the BECs. For simplic-
ity we assume that the ground state energies of the two
wells before mixing are equal, E0 ¼ 0, and that the wave
functions of the excited states extend over both wells.
Inserting the field operator (2) into Eq. (1) and evaluating
the overlap matrix elements in a straightforward way, the
Hamiltonian takes for t > 0 the form, H ¼ HBEC þHqp þ
Hmix. HBEC describes condensate particles,

HBEC¼E0

X2
�¼1

a��a�þU

2

X2
�¼1
ða��a��a�a�Þ

�Jða�1a2þa�2a1Þ; (3)

with the Josephson coupling J and the interaction between
condensed particles, U > 0. Hqp corresponds to single-

particle excitations,

Hqp ¼
X
n�0

Enb̂
y
n b̂n þU0

2

X
n;m

b̂ymb̂yn b̂nb̂m; (4)

where En are the (bare) QP energies, andU0 is the repulsive
interaction between noncondensed particles. Mixing be-
tween the BECs and the QP system is described by

Hmix ¼ J0
X
n

�
ða�1a2 þ a�2a1Þb̂yn b̂n þ

1

2
ða�1a�2b̂nb̂n þ h:c:Þ

�

þ K
X2

n;�¼1

�
ða��a�Þb̂yn b̂n þ 1

4
ða��a��b̂nb̂n þ h:c:Þ

�
:

(5)

Here the coupling constant J0 arises as a QP-assisted
Josephson tunneling as well as a pairwise QP creation or
destruction out of both BECs simultaneously. K represents
the density-density interaction of condensed and noncon-
densed particles and the pairwise QP creation or destruc-
tion out of each of the BECs separately. In deriving Eq. (5)
we neglected the off diagonal in n andm elements because
of different spatial dependence of the wave functions.
To treat the nonequilibrium quantum dynamics of the

system, we use the Keldysh Green’s function GþC,
generalized to Bose-condensed systems. The QP part
reads,

Gnmðt; t0Þ ¼ �i
hTCb̂nðtÞb̂ymðt0Þi hTCb̂nðtÞb̂mðt0Þi
hTCb̂

y
n ðtÞb̂ymðt0Þi hTCb̂

y
n ðtÞb̂mðt0Þi

 !

¼ Gnmðt; t0Þ Fnmðt; t0Þ
�Fnmðt; t0Þ �Gnmðt; t0Þ;

 !
; (6)

where TC implies time ordering along the Keldysh contour,
i.e., each of the normal and anomalous bosonic Green’s
functions G and F is a 2� 2 matrix in Keldysh space. The
condensate part is classical with trivial time ordering,

C ��ðt; t0Þ ¼ �i
a�ðtÞa��ðt0Þ a�ðtÞa�ðt0Þ
a��ðtÞa��ðt0Þ a��ðtÞa�ðt0Þ

 !
: (7)

The equations of motion for GþC are derived in a
standard way [15]. Transforming the time variables to
center-of-mass and relative coordinates, T ¼ ðtþ t0Þ=2
and � ¼ ðt� t0Þ, observing that the Josephson dynamics
depending on T is slow compared to the inverse QP en-
ergies (J < �), the relative coordinate can be set � ¼ 0 in
all propagators and self-energies. We treat the QP inter-
action in Eq. (4) within the self-consistent Bogoliubov-
Hartree-Fock approximation [16]. This will be sufficient
for the present purpose, since QP collisions, neglected
here, will play a role only for sufficiently high population
of QP levels (see below). The normal and anomalous QP
self-energies, �nð� ¼ 0; TÞ, �nð� ¼ 0; TÞ, are then diago-

FIG. 1 (color online). A BEC in a double-well potential after
abrupt decrease of the barrier height. The definitions of the
parameters are explained in the text, see Eqs. (3)–(5).
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nal in the QP level index n and read,

�nðTÞ¼KðN1þN2ÞþJ0ða�1a2þa�2a1Þþ2iU0
X
m

G<
mmðTÞ;

(8)

�nðTÞ ¼ K

2

X2
�¼1

a�a� þ J0a1a2 þ iU0
X
m

F<
mmðTÞ; (9)

with �� ¼ � and �� ¼ ��. After lengthy but straightfor-
ward calculations one arrives at the coupled set of equa-
tions for the noncondensate propagators G<ð� ¼ 0; TÞ,
F<ð� ¼ 0; TÞ and the complex condensate amplitudes
a1ðTÞ, a2ðTÞ,

i
@

@T
G<

nnðTÞ ¼ �nðTÞ �F<
nnðTÞ � ��nðTÞF<

nnðTÞ;�
i
@

@T
� 2En � 2�nðTÞ

�
F<
nnðTÞ

¼ �nðTÞ �G<
nnðTÞ þ�nðTÞG<

nnðTÞ; (10)

i
@

@T
a1ðTÞ ¼ ½Uja1ðTÞj2 þ KNbðTÞ�a1ðTÞ � Ja2ðTÞ

þ J0NbðTÞa2ðTÞ

þ i

�
K

2
a�1ðTÞ þ

J0

2
a�2ðTÞ

�X
n

F<
nnðTÞ: (11)

The equation for a2ðTÞ is obtained from Eq. (11) by
a1! a2. From Eqs. (10) and (11) we compute the occu-

pation numbers for bosons out of condensate, NðnÞb ðTÞ ¼
hb̂yn ðTþÞb̂nðTÞi, NbðTÞ ¼ P

nN
ðnÞ
b ðTÞ, the condensate popu-

lation imbalance zðTÞ ¼ ½N1ðTÞ � N2ðTÞ�=N, normalized
by the total particle number N ¼ N1ð0Þ þ N2ð0Þ þ Nbð0Þ,
and the time evolution of the phase difference �ðTÞ ¼
�2ðTÞ � �1ðTÞ. To absorb the large factors of particle
numbers appearing in Eqs. (9)–(11), it is useful to define
the dimensionless parameters u ¼ NU=J, u0 ¼ NU0=J,
j0 ¼ NJ0=J, k ¼ NK=J, and nðnÞb ðTÞ ¼ NðnÞb ðTÞ=N.

Without coupling to the QP excitations (j0 ¼ k ¼ 0),
Eq. (11) reduces to the two-mode model of Smerzi et al.
[5], exhibiting the self-trapped and delocalized regimes,
with a Josephson oscillation frequency of

!ð0ÞJ ¼ 2jJj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u=2

p
(12)

in the linear regime (Eq. (10) in Ref. [5]). When, however,
j0 � 0, k � 0 and QPs are excited, NbðTÞ> 0, the QP-
assisted Josephson tunneling term in Hmix becomes active
[J0 term in Eq. (11)]. One then expects an enhanced
Josephson frequency, with roughly J replaced by J½1�
j0nbðTÞ� in Eq. (12). At the same time, Rabi oscillations

of the NðnÞb ðTÞ, i.e., of QP pairs between the BEC and the

excited levels, with frequencies !R � 2En set in, c.f.
Eq. (10). As a result, in this QP-dominated regime one

expects complex, high-frequency anharmonic oscillatory
behavior.
The complete numerical solutions of Eqs. (9)–(11) for a

finite-size trap with N ¼ 5� 105 particles (level spacing
� ¼ Enþ1 � En ¼ 10J, taking 5 QP levels into account
[17]) are shown for typical parameter values in Fig. 2 for
the delocalized regime and in Fig. 3 for the initially self-
trapped regime.
The results reproduce the expected behavior disc-

ussed above in the regime with finite QP population. The
parameters were chosen such that the energy �E stored
in the two BECs by the initial, nonadiabatic switching on

of J is much greater than the QP energies, �E �
J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1ð0ÞN2ð0Þ

p � �. The most striking and most important
feature seen in both figures is that nevertheless multiple
undamped Josephson oscillations occur for an extended
period of time without QPs being excited. The reason for
this behavior is that in the initial state the QP population
nbðtÞ is vanishing and, therefore, the QP-assisted
Josephson tunneling term J0 in Eq. (5) does not contribute.
Hence, the Josephson oscillations have the bare frequency

!J � !ð0ÞJ < 2� which is not sufficient to excite a QP pair
perturbatively. Only for times greater than a characteristic
time �c the highly nonlinear dynamics of the system makes
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FIG. 2 (color online). Time-evolution of condensed and non-
condensed particles for the initial conditions zð0Þ ¼ �0:6,
�ð0Þ ¼ 0 and interaction parameters u ¼ u0 ¼ 5, j0 ¼ 60, k ¼
0 (delocalized regime). 5 QP levels were included in the nu-
merical evaluation. (a) The dynamics of the BEC population
imbalance zðTÞ is shown (solid black line). The dashed, blue line
shows, for comparison, the behavior without QP coupling, u0 ¼
j0 ¼ k ¼ 0, in agreement with Ref. [5]. (b) zðTÞ vs �ðTÞ map.
The arrow indicates the direction of time evolution. The time
T ¼ �c is marked by the black dot. It is seen that at T ¼ �c the
system changes dynamically from a � ¼ 0 to a � ¼ � junction
with more erratic phase evolution. (c) Time evolution of the
noncondensed particle population. The black curve (also in the

inset) shows the particle occupation of the first level nð1Þb , while

the red curve is the sum of all five levels nb. For T < �c the two
curves practically coincide.
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QP excitations possible. In this long-time regime the finite
QP population nbðtÞ and fast oscillations of the BEC
population imbalance zðtÞ stabilize each other mutually:
nbðtÞ> 0 implies a QP-enhanced Josephson frequency,
and the resulting fast oscillations (!J > 2�) of zðtÞ can
efficiently excite QPs via the mixing Hamiltonian (5).

The fast, QP-induced dynamics implies two further
features. (1) As seen from Fig. 3(a) an initially self-trapped
state is destroyed and the system changes to a delocal-
ized state at the same time when nbðTÞ becomes sizeable.
(2) At the onset of the fast dynamics the system changes
from a � ¼ 0 to � ¼ � Josephson junction, see Figs. 2(b)
and 3(b). This can be understood qualitatively, in that the
large phase difference �ðTÞ � � is required to sustain the
large Josephson current in the state with fast dynamics.

Since the transition to the QP-dominated regime is not
described by a Fermi golden rule, it is hard to analyze the
time scale �c analytically. We defined �c numerically as the
scale where nbðtÞ first exceeds 0.05 and extracted it from
our solutions. As seen in Fig. 3(a), �c is essentially inde-
pendent of the QP interaction u0. The dependence of 1=�c
on the parameters j0 and k (Fig. 4) is remarkably linear, and
for j0 < k no transition to the QP-dominated regime is
found.

To conclude, we have presented a detailed quantum
dynamical study of the nonlinear Josephson dynamics of
BECs confined in a finite-size double-well potential, in-
cluding coupling to quasiparticle states. Remarkably, the
system can sustain multiple, undamped Josephson oscilla-
tions for an extended time period before quasiparticles
get excited and the behavior changes abruptly to a regime
of fast Josephson and Rabi oscillations. Only in this
quasiparticle-dominated regime we expect strong damping
of the oscillations due to inelastic quasiparticle collisions,
equilibrating the system at a finite temperature. This will
be a subject of further research. The sharp but continuous
transition from the Josephson- to the quasiparticle-
dominated regime should be experimentally observable.
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