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Identification of a Quasiseparatrix Layer in a Reconnecting Laboratory Magnetoplasma
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The concept of quasiseparatrix layers (QSLs) has emerged as a powerful tool to study the connectivity
of magnetic field lines undergoing magnetic reconnection in solar flares. Although they have been used
principally by the solar physics community until now, QSLs can be employed to shed light on all
processes in which reconnection occurs. We present the first application of this theory to an experimental
flux rope configuration. The three-dimensional data set acquired in this experiment makes the determi-

nation of the QSL possible.

DOI: 10.1103/PhysRevLett.103.105002

Magnetic field line reconnection is still considered, by
some, to be one of the most important topics in plasma
physics. It has been in this category for close to 30 years.
Many early [1-5] as well as recent [6,7] reconnection
experiments forced magnetic flux to merge and form X
points or a neutral sheet. In nature, reconnection can occur
when fields are entrained in flows, such as in the magne-
totail [8], or when magnetic field is locked into highly
conducting boundaries, such as in solar footprints [9].
The source of all magnetic fields in a plasma are current
systems, although in experiments some of the current can
be in conductors entrained in the plasma. From this per-
spective it is obvious that reconnection can occur in dy-
namic current systems. For example, reconnection has
been observed in three-dimensional current systems in
the aftermath of a collision of two dense plasmas in a
background plasma [10]. In the Sun, coronal mass ejec-
tions can lead to flux ropes [11] that emerge from the
corona and can reach Earth. They may remain anchored
on the Sun, or break away to become plasmoids [12]. A
single flux rope carries a current which makes the magnetic
field surrounding it helical. Two or more adjacent flux
ropes can interact via their J X B force. This may lead to
merging as was seen in an early experiment [13] in which
the process lead to a force free state where the magnetic
fields and plasma currents became parallel. A recent ex-
periment using washer stack guns to produce initially
parallel current carrying plasmas showed that magnetic
field reconnection occurs when two flux ropes merge [14].

In 2D reconnection theory, regions of unconnected mag-
netic field lines are bounded by lines called magnetic
separatrices where the magnetic topology changes discon-
tinuously. At points or lines where the magnetic field
vanishes, field lines can break and reconnect, releasing
magnetic energy. However, in 3D, reconnection is possible
in the absence of separatrices. Instead, one can define a
generalization of a separatrix called a quasiseparatrix layer
(QSL) [15]. At a QSL, the field connectivity changes
rapidly but continuously across a narrow spatial region.
QSLs have proven extremely useful in identifying regions
of 3D magnetic reconnection in theoretical configurations
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[16] and in observations of solar flares [17,18]. In particu-
lar, the geometry of the layer is that of a hyperbolic flux
tube (HFT) [16], which is thought to be a preferred site for
current layer formation [19-21].

Here we report fully three-dimensional reconnection
where two flux ropes are immersed in a magnetoplasma
capable of sustaining Alfvén waves. Data were acquired at
20000 spatial locations and as a function of time. The
volumetric data set allows the reconstruction of field lines
as well as the three-dimensional current system that
evolves. This in turn allows one to observe, for the first
time in an experiment, a QSL.

This experiment was conducted in the Large Plasma
Device (LAPD) at UCLA. The background plasma is
cylindrically shaped with a length of 17 m and a diameter
of 60 cm. It is formed by a pulsed 1 Hz dc discharge from a
barium oxide-coated nickel cathode. A molybdenum anode
is 30 cm from the cathode, and the column is terminated by
a floating mesh, so no net current is present in the back-
ground plasma. For this experiment, a helium plasma is
produced with parameters n ~ 2.5 X 10> cm™3, T, ~
5eV,T;~1eV,and B,;, ~270 G.

To create the flux ropes, two current channels inside the
background plasma are produced by directly-heated lan-
thanum hexaboride (LaBg) cathodes mounted on a mov-
able shaft. A schematic of the experimental layout is shown
in Fig. 1. The cathodes are constructed by cutting 1 mm
(0.15p;) slits into a 2.6 cm X 2.6 cm slab of LaBg to form
a serpentine shape. A dc power supply provides 570 W
of direct heating to maintain the 1800 °C cathode
temperature.

The LaBg cathodes are located at z = 0 cm (facing and
1400 cm away from the main cathode). The upper and
lower cathodes are positioned in this axial plane at (x, y)
coordinates (0.0, 8.0) cm and (0.0, 4.3) cm, respectively. A
16.5 cm circular molybdenum mesh anode is installed at
z = 900 cm. The cathodes are biased at 100 V with respect
to this anode via a transistor-switched capacitor bank. Each
cathode emits 30 A.

The LaBg cathodes are pulsed for 2 ms during the active
phase of the 14 ms background plasma discharge. Typical
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FIG. 1. Schematic of experiment (not to vertical scale). The
background He plasma is produced by a BaO coated cathode that
is biased to a mesh anode by a transistor-switched capacitor
bank. The LaBg cathodes, pulsed by a separate capacitor bank,
produce the flux ropes.

discharge currents for the LaBg cathodes are shown in
Fig. 2. The characteristic rise time for the LaB¢ currents
is 10 us. For about 500 ws, the currents are relatively
quiescent, but eventually a strong coherent oscillation
appears. Note that the round-trip Alfvén transit time, 74,
is approximately 100 ws inside the current channels.

To diagnose the plasma, 3-axis magnetic (B) probes are
installed at various axial locations. Each probe is movable
in the transverse plane by computer controlled stepper
motors. The plasma is highly reproducible, so a data set
can be constructed with an ensemble of many shots
(sampled at 25 MHz). Two such time series are shown in
Fig. 2. The period of these oscillations is 190 us and is
constant across the column, but the amplitude is much
stronger at the far end of the column.

The resulting magnetic field lines have a flux rope
geometry. Each rope has both writhe and twist compo-
nents of 180° and 180-270°, respectively. Twist varies
somewhat with radius. Data collected from a single cur-
rent channel configuration show only a twist compo-
nent. The radius of each rope, defined by the location
where B, is at a maximum, is a = 1.5 cm. A current
carrying cylindrical plasma is predicted to be kink un-
stable if the Kruskal-Shafranov stability factor g =
2maB,/LBy(a) is less than 1 [22], where a is as defined
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FIG. 2. (a) Typical current in LaBs-mesh anode circuit. (b) B,
at (0.0, 2.7, 64) cm, which is at the edge of the lower flux rope,
and (c) ( — 1.5, 9.9, 830) cm, showing pulses due to the rotation
of the flux ropes at the far end.

above, and L is the length of the plasma. In this experi-
ment, g = (.7, so this helical structure is consistent with a
kink instability. Representative field lines at » = 0.5 cm
are shown in Fig. 3(a).

The current density is calculated from Ampere’s law,
J = (¢/47)V X B. Typical J, profiles are shown in
Fig. 3(b). The character of the current channels near the
cathode does not change appreciably in time, but at the far
end of the channels, the profile changes from a merged
configurationto a complex filamented one with reverse cur-
rent layers inside it. The reverse current layers, signatures
of magnetic reconnection, are observed for z= 600 cm.

The flux ropes rotate about their central axes with a
rotation period of 190 us, presumably due to the presence
of a parallel plasma flow [23]. Mach probe measurements
estimate that v /v, =~ 2, where v, is the local Alfvén
speed, B, /«/4mp. The rotation of the field line at the
center of each flux rope in the z = 600 cm can be seen
in the hodograms in Fig. 4(a). Figure 4(b) shows the
rotation in the z = 830 cm plane, where each rope sweeps
out a larger area as it rotates.

The perpendicular separation As between the central
field lines at z = 600 cm and z = 830 cm is shown in
Fig. 4(c). At z = 600 cm, we can see that the field lines
maintain a relatively constant separation, but at z =
830 cm there are 2 times where As decreases quickly.
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FIG. 3 (color). (a) Two sets of representative field lines at r =
1.615 ms. The field lines are seeded from a 1.0 cm diameter
circle centered at each current channel in the z = 64 cm plane.
The axial dimension is compressed 30 times. (b) J, at each end
plane at an early time (top row) and at a late time (bottom row) in
the discharge.
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These times correspond to the positions on the hodograms
indicated by diamonds (f = 1.699 ms) and circles (¢ =
1.790 ms). During these times when the flux ropes are
colliding, the reverse current sheets are present, and one
expects magnetic reconnection as flux piles up.

To determine the location of the QSLs, we calculate the
squashing degree [16]. Consider two transverse planes at
7z = zp and z = z;. Each field line that intersects the z = z,
plane at coordinates (x, y) has corresponding points
(X(x, y), Y(x, y)) where it intersects the z = z; plane. The
squashing degree,

9X\2 1 (0X\2 4 (3Y\2 4 (82
:(5 +(8_y + (5= +(5

|B(20)/B.(z1)l ’

indicates how much the endpoints in the z; plane change
relative to small movements in the z; plane. Regions where
Q> 2 define QSLs. In this experiment, [l —
B.(z9)/B.(z;)| = 0.005, so we neglect this term in our
calculations. Q does not change if we switch the initial
and final planes, so we can assign a value of Q to each field
line.

In order to accurately compute field lines, the magnetic
field data set must be divergenceless to a high degree of
precision, and preferably described analytically by a set of
splines. Nonzero divergence can be introduced from mea-
surement errors such as small misalignment of the probe
head, or even by interpolation between grid points. We
follow the procedure described in detail in [24] to ““diver-
gence clean” the data set. Briefly, B is integrated in Fourier
space to find the magnetic vector potential A, which is then
fitted with tricubic splines. The splines are then differen-
tiated analytically to get the divergenceless magnetic field.

To compute O, we seed field lines at z = 64 cm and
determine where they intersect the z = 830 cm plane. The
field line starting and end points are calculated on a nu-
merical grid with 4500 X 5100 points with 9.33 X
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FIG. 4. Hodograms of the point at which the central field line
in each flux rope intersects (a) the z = 600 cm plane and (b) the
z = 830 cm plane. “Upper” and “lower” indicate which cath-
ode the field line is seeded from. Each arrow indicates the start of
the hodogram at + = 1610 ms. (c) Distance As between each
flux rope at each axial position.

10~* cm spacing. The derivatives of the mappings of x
and y coordinates between each plane then provide Q. This
assigns a value of Q to every field line starting in the z =
64 cm plane. The numerical grid is considerably finer than
the measurement grid, but Q is primarily a function of the
global structure of the magnetic field. Calculation of Q on
coarser grids shows similar distributions, but the peaks of
Q are not as well resolved.

A plot of log,((Q) in this plane during the first colliding
phase ( = 1.699 ms) is shown in Fig. 5. The ““S”* shape of
the QSL is quite similar to what has been observed in
simulations of merging twisted flux tubes [25]. The S
actually consists of several layers stacked together, similar
to the fine double peaks found in the analytical configura-
tion in [26].

At other times, the Q distribution has a similar overall
profile, but the layers within the S move around and their
peak values of Q change. We find that Q(¢) attains local
maxima when As reaches local minima; in other words, the
field lines are most diverged during flux rope collisions.

Since Q is strongly peaked, we can visualize the QSL by
plotting the surface composed of field lines with Q greater
than some threshold; here we select Q = 1000 to visualize
the most salient features of the Q distribution. In Fig. 6(a),
the Q = 1000 surface is shown threading between the two
flux ropes. The ends of this surface have a thin profile, but
the middle is shaped like an equilateral triangle.

The connectivity of field lines on this surface show that
it has a HFT geometry where field lines that are closely
spaced at one end of the tube diverge hyperbolically at the
other end. In Fig. 6(b) we seed red and yellow field lines at
z = 64 cm, the top and bottom sides of the QSL, respec-
tively. They are initially separated by the QSL width of
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FIG. 5 (color). A logarithmic plot of the squashing degree Q in
the z =64 cm plane at = 1.699 ms. Isocontours of J, =
{—5.5, —=3.0} A/cm? are overplotted in white.
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FIG. 6 (color). (a) Representative field lines from each flux
rope with the Q = 1000 surface in blue threading between them
at + = 1.699 ms. The field lines are seeded from the same
locations as in Fig. 3. The axial dimension is compressed 30
times. (b) A view of the QSL and its hyperbolic flux tube
structure. Field lines in red and yellow are seeded from the
upper and lower sides of the QSL, respectively. Each pair of field
lines is initially separated by the QSL width, 0.05 cm, but
diverge to either corner of the QSL (~2 cm separation) in the
7 =830 cm plane. The axial dimension is compressed 100
times.

0.05 cm, but map to the corners of the QSL at the z =
830 cm plane. Here, their separation is approximately
2 cm. Not shown in the figure are the field lines starting
at the corners of the QSL at z = 64 cm; they map to the
wide edges of the QSL in the z = 830 cm plane. The QSL
generally follows the location of the reverse current sheet,
as is expected from a HFT, although the agreement is not
exact. We plan to make more detailed comparisons in a
future work.

In conclusion, we have experimentally observed a QSL
with HFT geometry between magnetic flux ropes. The
QSL shape has remarkable similarity to simulations in
[25]. A more general theory of 3D reconnection based on
QSLs has been put forth [27], and work is being done to
apply it to this experiment. It is hoped that, once this theory
is fully developed, quantities such as the reconnection rate
and current layer thickness can be predicted from the
strength and size of the QSLs. This experiment is well
suited to help guide and verify these theories.

We thank Vyacheslav Titov for helpful discussions, and
Zalton Lucky and Marvin Drandell for providing technical
expertise. The work was done at the Basic Plasma Science
Facility at UCLA, which is supported by a cooperative
agreement between the National Science Foundation and
the Department of Energy.
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