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We numerically demonstrate a simple one-dimensional model of an acoustic diode formed by coupling

a superlattice with a strongly nonlinear medium. The first numerical observation is presented of a

significant rectifying effect on the acoustic energy flux within particular ranges of frequencies. By

studying the underlying rectifying mechanism and the parameter dependence of the rectifying efficiency,

the effectiveness of the acoustic diode is proved despite its simplicity. We also briefly discuss possible

schemes of the experimental realization of this model as well as devising more efficient models.
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The origin of electrical diodes goes back more than one
century, and they are the first devices to enable the rectify-
ing of the current flux and have eventually led to substan-
tial scientific revolutions around the world in many aspects.
Motivated by the significant rectifying phenomenon of
electrical diodes, considerable effort has been and contin-
ues to be dedicated to research in an attempt to control
other kinds of energy in a similar manner [1–5]. Li et al.
have numerically studied the heat conduction in one-
dimensional (1D) nonlinear lattices and presented the fun-
damental model of the so-called thermal diode that has a
rectifier effect on thermal energy [1,2]. It should be intri-
guing to devise an efficient model to rectify the acoustic
energy flux, in the respect that the acoustic wave is an
important form of classical wave with much longer re-
search history than electricity. The investigation of such a
model has potential practical applications, such as a uni-
directional sonic barrier and controlled destruction of kid-
ney stones via ultrasonic lithotripsy. As a matter of fact, the
concepts of the ‘‘acoustic diode’’ (AD) have already been
proposed for decades [3–5]. It is noteworthy, however, that
most of the related works involve no more than the sim-
plest possible mechanical devices designed to reduce the
negative sound pressure, lacking in the crucial nonlinearity
effect for observing the rectifying phenomenon on the
energy flux [3,4]. Nesterenko et al. [5] have revealed the
abnormal reflectivity at the interface of a strongly non-
linear system formed by granular materials which may be
reasonably identified as an AD, but the principal informa-
tion carrier in their system is solitary waves. To our knowl-
edge, an effective model of an AD is still to be proposed
that has the rectifying effect on the energy flux of a
compressional wave that is the most frequently encoun-
tered mode of acoustic waves.

In this Letter, we demonstrate the possibility of building
the model of an AD by numerically inspecting the propa-
gation of a longitudinal wave in a simple nonlinear system.
The first numerical observation of a significant rectifying
effect on acoustic flux is presented that allows the acoustic
waves of particular frequencies to propagate in one direc-

tion but causes the system to act like an insulator as the
incident direction is reversed. Based on analysis of the
underlying rectifying mechanism and detailed inspection
of the parameter dependence of the rectifying efficiency,
the present system may be reasonably identified as an AD
model that works effectively in a wide range of structural
parameters despite its simplicity. This model is efficient
and simple enough to encourage practical efforts of experi-
mental realization of an AD. A brief discussion has also
been given on the potential schemes for observing the AD
effect experimentally as well as devising more efficient
models with complicated configurations.
Consider the propagation of a longitudinal wave of

frequency ! in a 1D system fabricated by coupling a
superlattice (SL) formed by laminating two linear media
I and II periodically with the other medium, III, with
particularly strong nonlinearity, as shown in Fig. 1(a).
The total number of the periods is denoted as N. For the
medium p (p ¼ I; II; III), the parameters of dp, �p, cp,

and �p are employed to represent the thickness, the mass

density, the longitudinal wave velocity, and the equivalent
nonlinearity parameter, respectively. The nonlinearities of
media I and II are assumed negligible as compared with the
extremely large value of �III, i.e., �I ¼ �II ¼ 0. The ab-
breviations LB and RB refer to the leftmost and the right-
most boundaries, respectively. There exist a few
advantages in employing such a 1D system. First, this

FIG. 1. (a) The schematic illustration of the 1D model of the
AD. (b) The dispersion relationship of linear band structure of
the SL.
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system is sufficiently simple to warrant accurate extraction
of many significant results. Second, this model is compli-
cated enough to yield the rectifying effects. Third, such a
simple system serves as the toy model of an AD that may
be readily extended to be more complex and efficient in
practice. Last but not the least, the experimental observa-
tion of the rectifying effects may be expected due to the
simplicity as well as the efficiency of this system.

The media I and II chosen are water and glass, respec-
tively, for which the material parameters are �I ¼
998 kg=m3, cI ¼ 1483 m=s and �II ¼ 2767 kg=m3, cII ¼
5784 m=s. The material parameters of medium III are
assumed to be identical to medium I, except that the value
of �III may be manually adjusted in the numerical simula-
tions to study the sensitivity of the results to nonlinearity.
We assume the whole system is immersed in an infinite
matrix of water. Unless otherwise stated, the system pa-
rameters are dII ¼ 0:7dI, dIII ¼ 15dI, N ¼ 5, and �III ¼
104. For this SL with simple 1D structure, the transmission
property of the fundamental wave (FW) can be easily
predicted by the dispersion relationship of linear band
structure, as follows: [6]

cosKðdI þ dIIÞ ¼ cosð!dI=cIÞ cosð!dII=cIIÞ
� cosh� sinð!dI=cIÞ sinð!dII=cIIÞ;

where � ¼ lnð�IcI=�IIcIIÞ and K is the usual Bloch wave
number. Figure 1(b) displays the dispersion relationship for
the SL. It is seen that pass bands and band gaps are
produced in the frequency spectrum in an alternate manner,
represented by the segments of curves inside and outside
the region bounded by cosKðdI þ dIIÞ ¼ �1 (two thin
horizontal lines), respectively. In the SL, acoustic waves
can propagate within the pass bands, whereas those within
the band gaps undergo exponential attenuations as they
propagate. This is the basic characteristic of the SL that
plays a crucial role in the AD model.

The fundamental equation that governs the propagation
of the acoustic wave in such a nonlinear system is given in
Lagrangian coordinates as follows, with the effects of
mode conversion and viscosity neglected:

@2�

@a2
� 1
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@2�
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@�

@a

@2�

@a2
;

where � and a refer to the displacements of Lagrangian
particles and the Lagrangian coordinates, respectively.
Boundary conditions are invoked to keep the continuity
of the pressure and the particle velocity at every interface
for both the FW and the second harmonic wave (SHW),
and the discontinuity due to the accumulation of nonlinear
distortion and the inherent nonlinearity of interfaces have
not been taken into account [6].

The propagation of acoustic waves in this nonlinear
system is investigated by using an extended transfer-matrix
method combined with a perturbation technique, as de-

scribed in Ref. [6], where the significant conclusion may be
achieved that the amplitude of the incident wave affects the
transmission of the nonlinear wave. It is expected that,
therefore, such a remarkable pressure dependence of the
transmission spectrum in the present nonlinear system
could lead to an asymmetric manner in the propagation
of acoustic flux; i.e., the amount of acoustic energy passing
through the system is different as its amplitude or direction
varies. This definitely serves as the necessary condition of
the potential occurrence of the rectifying effect.
For the realization of an efficient AD model, the driving

frequency must be appropriately chosen such that ! lo-
cates in the band gap of the SL while 2! falls within the
pass band. In other words, the AD effect can only be
observed in a series of narrow frequency ranges discretely
distributed in the frequency domain which are represented
by the gray regions in Fig. 1(b) and denoted as effective
rectifying bands (ERBs) here. We choose a particular value
of normalized frequency !dI=cI ¼ 0:5. The amplitude of
the incident wave at the LB or RB is v ¼ 5� 10�6cI with
v being the particle velocity.
Figures 2(a) and 2(b) illustrate the spatial distribution of

the time-averaged energy density as the acoustic wave
incidents from the LB and the RB of the system, respec-
tively. The total energy density of the acoustic wave Emay
be expressed, up to the second order approximation, as
EðaÞ ’ E1ðaÞ þ E2ðaÞ. Here the subscripts 1 and 2 refer to
the FW and SHW, respectively. Notice that in Fig. 2 the
normalized energies may exceed unity due to the interfer-
ence between incident and reflected waves in a standing
wave field, which results in redistribution of acoustic en-
ergy in space. It is also noteworthy that the time-averaged
energy of FW in the 1D system is piecewise constant, as
expected [7]. Within the SL, the SHW only results from
medium III due to the linear nature of media I and II, and
the energy density is piecewise constant as a consequence.
In medium III, however, the energy of the SHW is also
generated from the FW and hence accumulates with re-
spect to propagating distance, as observed in Fig. 2. As the
acoustic wave incidents from the LB, the FW is evanescent
in the SL, which leads to the result that the amount of

FIG. 2. The spatial distributions of the time-averaged normal-
ized energy densities in the system as acoustic wave incidents
from the LB (a) and the RB (b), respectively. E1=E0 and E2=E0

are ratios of the energy densities of the FW and SHW to the
incident wave, respectively.
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acoustic energy entering medium III is very small.
Therefore the whole system virtually degenerates to a
linear system in which the transmission spectrum of the
incident wave is identical to the linear band structure of SL.
This results in an exponential attenuation of the energy
density for the FW and a periodically modulated distribu-
tion of energy density with extremely small amplitude for
the SHW, as shown in Fig. 2(a). The total transmissions of
FW and SHW can be calculated to be T1 ¼ E1ðDÞ=E0 ’
1:2� 10�4 and T2 ¼ E2ðDÞ=E0 ’ 1:7� 10�9, respec-
tively, with D ¼ NðdI þ dIIÞ þ dIII being the thickness of
the whole system. Consequently the entire system behaves
almost like a perfect insulator that prevents the acoustic
energy flux from passing.

On the other hand, as the incident direction is reversed,
the propagation of the incident wave may be expected to be
substantially different as a result of the destruction of the
system symmetry by the nonlinearity. Compared with the
previous case, the transmission of the FW should be un-
affected owing to the reciprocal theorem, but the SHW
generated within the system is no longer negligible. Rather,
the present system has been partially converted to a non-
linear system due to the strong nonlinearity of medium III.
Observation of Fig. 2(b) shows that the reversal of the
incident direction remarkably enhances the amount of the
energy transferred into SHW within medium III, and the
acoustic energy can partially pass through the 1D system in
a periodically modulated manner. It is obtained from the
numerical results that the transmission of SHW is en-
hanced to be T2 ¼ E2ð0Þ=E0 ’ 0:1.

Figure 2 demonstrates that a rectifying effect of the
acoustic wave has been identified in the present system,
which restricts the energy flux in one particular direction.
For building an effective AD, however, it is necessary to
analyze the pressure dependence of the transmission of the
acoustic wave. The total transmission of energy flux versus
p0 is plotted in Fig. 3(a). Here p0 and P0 refer to the
amplitudes of the pressures of the incident wave and the
atmosphere, respectively, i.e., P0 ¼ 1:01� 105 Pa; the
positive (negative) value of the pressure and the trans-
mission indicates that the wave incidents from the RB
(LB). It is apparent that the insulating property of the
system always maintains under the action of a negative
pressure, while the system allows more energy to pass as
we gradually increase the strength of positive pressure. It is
clearly observed that the intrinsic relation between pres-
sure and energy flux illustrated in Fig. 3(a) exhibits a
strong similarity with the relation between voltage and
current flow of an electrical diode. The present system
should therefore be reasonably identified as an effective
AD model. It is worth pointing out that in Fig. 3(a) the
amplitude of positive pressure has been cautiously con-
trolled to guarantee the validity of the perturbation method.
An additional enhancement of transmission may be ex-
pected, nevertheless, if the amplitude is further increased.

Notice that the abnormal transmission of acoustic wave
in this system in fact results from the difference between
the transmission spectra of FWand SHW. Therefore, as we
vary the amplitude or the direction of the incident wave,
the whole system may become a totally linear system
forbidding the propagation of energy flux or a partially
nonlinear one allowing the energy flux to pass. This should
be interpreted as the underlying mechanism in this AD
model, inherently similar to the model of the thermal diode
[2]. It is noteworthy that, however, any composite structure
(e.g., the present SL) only prohibits the sound propagation
for some particular frequency ranges discretely distributed
in the frequency domain. This is different from the case of
the thermal diode where there exists one phonon band for
the heat current to pass through [2]. Hence it is evident that
the AD effect could only be observed within a series of
ERBs, under the condition that the FW is forbidden while
the SHW is allowed. It is understandable that the rectifying
efficiency of the AD should depend on the extent to which
the system is converted to a nonlinear one. It is thus
particularly significant to study the parameter dependence
of the rectifying efficiency. In an attempt to describe
quantitatively the rectifying efficiency, we introduce the
ratio Tþ=T� with Tþ and T� being the transmission when
the wave incidents from the RB and LB, respectively.
Figure 3(b) plots Tþ=T� versus the strength of the incident
wave by changing the system parameters of N, �III, and
dIII. The augment of the nonlinearity or the thickness of
medium III increases the energy of SHW that is allowed to
pass through the system, and the value of Tþ becomes
larger. On the other hand, the increase of the number of
periods in the SL apparently reduces the transmission of
FW, and the value of T� decreases. Consequently, an
enhancement of rectifying efficiency is observed in
Fig. 3(b) as we increase any of the parameters of N, �III,
and dIII, as expected.

FIG. 3. (a) Total transmissions of energy flux versus the nor-
malized amplitude of the incident wave. (b) Rectifying effi-
ciency Tþ=T� versus the strength of the incident wave for the
parameters: N ¼ 5, �III ¼ 104, dIII ¼ 15dI (circles), N ¼ 5,
�III ¼ 104, dIII ¼ 25dI (diamonds), N ¼ 5, �III ¼ 5� 104,
dIII ¼ 15dI (squares), and N ¼ 15, �III ¼ 104, dIII ¼ 15dI (tri-
angles).
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Apparently, the attenuation in band gaps determines the
extent to which the system becomes an insulator (i.e., the
value of T�) and should be large enough to guarantee the
rectifying efficiency of the AD. For a finite SL, the attenu-
ations are negligible at the edge of gaps, while they reach
the maxima at the center. It is obvious however, that the
ERBs locate generally at or near the centers of gaps,
sufficiently far from the edges. Therefore the attenuations
are large enough for the AD to work effectively, but their
values may notably vary versus the frequency for ERBs not
locating at the center, e.g., the first ERB. This is the reason
why we choose the particular frequency !dI=cI ¼ 0:5 in
the study, which locates very near the lower limit of the
first ERB. As proved by the numerical results, the rectify-
ing efficiency of the AD is considerably high for this
frequency at which the attenuation almost reaches the
minimum (’40 dB). Consequently it is expected that the
AD will be more efficient as one chooses higher driving
frequencies, which has been verified numerically.

The present model is sufficiently simple and efficient to
encourage practical studies of experimental realization of
an AD. It is of great significance to seek an appropriate
medium with particularly strong nonlinearity and negli-
gible viscosity, in the respect that the increase of N or dIII
inevitably enlarges the sample size. It may be an effective
scheme to employ a bubbly soft medium for which the
natural frequency of bubble !0 is much greater than! and
the volume fraction � has been adjusted in an optimal
manner. In the quasistatic case, according to Ostrovsky
[8], the resonant effect vanishes and the viscosity is negli-
gible, while the equivalent nonlinear parameter �III de-
pends on � only and reaches the maximum value
11�=64� at the optimal volume fraction 4�=3� with �
and � being the Lame coefficients. Hence one needs to
choose a bubbly soft medium with a substantially high
ratio of �=�, e.g., plastisol for which �=� ¼ 2� 105

[9]; then an extremely large �III may be obtained
(>104) while the equivalent linear parameters are nearly
unaffected due to the trivial magnitude of � (�10�6) [10].
Besides, � is small enough to break the multiple scattering
effects between bubbles that may lead to other phenomena
such as localization [11]. Therefore the assumption em-
ployed in the numerical simulations with regard to the
physical parameters of medium III is reasonable owing to
the fact the linear mechanical parameters of any soft
medium approximate those of water. On the other hand,
it should be possible to observe the AD effects in any
nonlinear lattice with appropriately chosen structural pa-
rameters. The SL may also be replaced by any other

composite with its own band structure. Particularly, it
should be a promising way to employ metamaterials for
building a more complex and effective AD system, which
may largely reduce the sample size and broaden the ERBs
due to the effect of subwavelength resonance [12,13]. This
will be the goal of our future research.
In summary, we have presented a simple model of an AD

formed by coupling a SL with a nonlinear medium and
revealed a significant phenomenon of the rectifying effect
of acoustic flux. We also have investigated the parameter
dependence of rectifying efficiency as well as the neces-
sary condition under which the AD works. The scheme of
practical experimental realization of the AD model is
briefly discussed.
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