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We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by
using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a
repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic
frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity,

permeability, and chiral coefficients.
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Following the original Casimir paper [1] for the attrac-
tion of two media, 1 and 2 occupying half spaces, z <0
and z > d, respectively, and such that the electromagnetic
fields are confined exclusively in the vacuum region be-
tween them, Lifshitz [2] generalized the calculation of this
force to the case that these two media are characterized by
frequency-dependent dielectric functions €, (w) and €,(w).
Subsequently, there was further generalization to general
bi-anisotropic media [3]. The formula for the force or the
interaction energy per unit area can be expressed in terms
of the reflection amplitudes, r;?b (j=1, 2) [4], at the
vacuum-medium j interface, giving the ratio of the re-
flected EM wave of polarization a by the incoming wave
of polarization b. Each a and b stands for either electric
(TM or p) or magnetic (TE or s) waves. The frequency
integration is completed along the imaginary axis by set-
ting w = i¢. The formula for the interaction energy per
unit area becomes

E(d) _ I |
A ] fj(z In detG; Rj rgs rgp ,

where G =1— R, -R,e 2K K = 1/kﬁ + &%/c?. For

isotropic media, the off-diagonal terms in R; vanish and
re = (n;K — K))/(n;K + K)), pp_(GK_

K;)/(€;K + K;), where K; = 1/kﬁ +€ju;E%/c? and p;

is the permeability of medium j. The slope of E(d) deter-
mines the sign of the force. + (-) corresponds to attractive
(repulsive) force.

In most cases the resulting Casimir force between the
two media separated by a vacuum region is attractive.
There is increased interest recently [5-8] in determining
whether there is a combination of media 1 and 2 capable of
producing a repulsive force. There have been mainly three
mechanisms to obtain repulsion for the Casimir force:
(i) Dzyaloshinskii’s Casimir repulsion [5], immersing the
interacting plates of €, and €, in a fluid of €3 and, more-
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over, satisfying the condition €,(i¢) < e3(i¢) < €,(ié);
(ii) Boyer’s Casimir repulsion [6], based on an asymmetric
setup of mainly (purely) nonmagnetic, vacuum, and mainly
(purely) magnetic; (iii) Leonhardt’s Casimir repulsion [7],
employing a perfect lens sandwiched between the inter-
acting plates. The possibility for a transition from an attrac-
tive to a repulsive force as the distance d decreases
(corresponding to a minimum of the interaction energy)
leads to nanolevitations and opens up many opportunities
for application, e.g., almost frictionless operation of nano-
motors. Even through Capasso’s group experimentally
realized the repulsion, based on the theoretical prediction
of Dzyaloshinskii et al. [5], this kind of system still has
friction because of the existence of the liquid. Leonhardt’s
Casimir repulsion needs a perfect lens at all frequencies
with simultaneously negative dielectric permittivity and
magnetic permeability; it is extremely difficult to obtain
a perfect lens in a broadband range, and impossible at all
frequencies. Finally, Boyer’s Casimir repulsion proposal
faces the essential obstacle that such nontrivial magnetic
materials in the optical regime do not exist in nature, and,
therefore, it relies on the nontrivial possibility of develop-
ing new artificial negative index metamaterials (NIMs).

In this Letter, we examined realistic nonchiral metama-
terials and we concluded they do not give a repulsive
Casimir force. However, we found that chiral metamateri-
als (CMMs) are excellent candidates to realize the repul-
sive Casimir force. The existence of a repulsive Casimir
force depends upon the strength of the chirality. We present
analytical arguments that strong chirality gives a repulsive
force, supported by numerical calculations.

NIMs [9], because of their resonance magnetic response,
offer more flexibility and, hence, more promise for achiev-
ing a repulsive Casimir force, based on Boyer’s prediction.
Indeed, in recent papers, Rosa et al. [10] found a repulsive
force in a range of values of d for a combination of a
mainly nonmagnetic Drude-modeled silver and a magnetic
NIM. This result was obtained [10] through the employ-
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ment of a Lorentz-type of magnetic permeability of the
form w(w) =1 — Q?/(w? — w2, + iyw). This form pro-
vides the opportunity to use an () large enough as to satisfy
the condition w(i¢) > €(i¢) and obtain thus Boyer’s
Casimir repulsion. For the reasons stated below we con-
sider a Lorentz-type frequency dependence of u(w) un-
physical. Instead, we employed the following realistic
expression for u(w):

Aw?

-+ iy,

plw)=1+a-— (1)

w2
where |a/| is usually much smaller than 1 and A = « in
order to satisfy the physical requirement that u(w) — 1 as
w — oo, [t must be stressed that the realistic expression (1),
although almost identical to the Lorentz form for w around
the resonant value w,,, produces radically different results
than the Lorentz one as far as the Casimir attraction is
concerned. As the authors of Ref. [10] have found out (and
we have confirmed), expression (1) (with = 0 and A #
0) combined with the form of Eq. (2) below for e(w) does
not produce repulsion. This is also true for the realistic case
of @ = A.

The w? dependence of the numerator of the resonance
term follows from the equivalent circuit approach [11] and
from the Maxwell’s equations in the low frequency regime
as stated in Ref. [10]. It is confirmed by the retrieval
procedure in actual SRR based and fishnet metamaterials.
Of course, it is possible to have more than one resonance
term in Eq. (1), but their coefficients must satisfy the
relation a — Y ;A; = 0 to obtain the correct limiting value
of w(o0) = 1. Besides cases having &« = A, we also exam-
ine the case a = 0 and A # 0 (which produces the incor-
rect limiting behavior, u(w) =1— A as w — ). The
reason for this unphysical choice is to determine the role
of the @ = oo value of u(w). The most general form of the
frequency dependence of the dielectric function is the sum
of the Drude term and several Lorentz-type resonance
terms. If only one resonance term is kept, we have
wﬁl w?

2 1 2 _ 2 4 ; :
w*tiyyw wp T iYrw

€(w) =1~- 2

We have calculated the Casimir force using for material
1 and material 2, €;, p; and €,, 5, as in Egs. (1) and (2)
with several values of A, w,),, wgl, w? (including wy =0,
w2 # 0, and wgl # 0, w2 = 0). Among these values, we
included realistic values as they were obtained by our
retrieval approach in various fabricated and/or simulated
NIMs. The Casimir force turned out to be attractive in all
cases we calculated. See the triangle and diamond curves
in Fig. 1.

Recently, a lot of experimental work on CMMs fabri-
cated by planar technologies have been published [12]. For
such artificial materials, the constitutive equations have the
form D = €,eE + ikH/cy and B = —ikE/cy + uouH,
where €, ©o, and ¢, are the permittivity, permeability, and
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FIG. 1 (color online). Casimir interaction energy per unit area
E/A (in units of hckj) versus kod; kg = wg/c. The triangle
curve corresponds to a = A = (0.001, k=0 (no
chirality),w,, = wg, w, =0, @, = wp for material 1, while
a=A=0, w, = 10w, o, = 0 for material 2. The diamond
curve is the case with « = A = 0.001, k =0, w,, =
0, w, = wg. The squares curve is the case with « = A = 0.001,
W = 0 =060k 0,=w0g=o0g o,=0, 0, =g
Finally, the circle curve shows repulsion for kyd < 0.0586 and
a stable equilibrium point at kyd = 0.0586; the parameters are
the same as for the square curve except for w,; = w,» = 0.7wp.
All the y’s equal 0.05wg except y,; = 0.05w ;.

wg, Wy =

speed of light in vacuum. For the CMMs, the coefficient «
obeys k(w) = w,0/(0? — w2y + iy, w) [13], which is
the same as the Condon model for homogeneous chiral
molecular media [14].

For such CMMs, assuming the electromagnetic wave is
from vacuum to CMMs, the reflection elements, evaluated
at purely imaginary frequencies, can be expressed explic-
itly [15]. The diagonal terms are r; = [+I'_(y; + xy-) —
(x+x— — D]/A for s and p respectively, and ' =

j
_,,5?5 =i(xy: —x-)/A; where A=T,(y:+x_)+

()(+)(— +1), x+ = k|2| + ”2¢§2/C2/ntK, I'. = (77(2) *
;) /2n0m;, ne = JER; E Kk Mo = N io/€0s M =
‘/,LLO,LLJ-/ €0€;. €, M), and k;, the chirality coefficient of

the plate j, are evaluated at purely imaginary frequencies.
Although n . are complex, the reflection elements, r’s, are
still purely real because y, = x*. (Notice that the con-
stitutive relations used in Lakhtakia’s work in Ref. [15] are
different from ours; however, they can be brought to the
same form; then their €, w, and 8 can be related to our €,
M, and k.)

Here, we consider first a special setup with two identical
CMM plates with the following parameters: €, = €,
M1 = m, and K, = k. We suspect that the chirality
coefficient, x, may provide sufficient new freedom to drive
the force to negative values (i.e., repulsive) at least for
some range of values of d. From E(d) it follows [10] that a
negative value of the Casimir force is favored by making
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the quantity / = Ti{G (1 — G)] as negative as possible
over as broad a range as possible of the parameters and the
integration variables. The quantity 7, has the same sign as
the quantity J:
_ (ris + 5, = 2r3,)e 2K = 2(r2, + rygr,,)2e K4
1= (3 +r2, — 2r%p)e’2’(d + (2, +r

2 ,—4Kd"
ssrpp) e

Because ry), is purely real as shown previously, it is clear
from J that the chirality by introducing the off-diagonal
quantity r,, provides the possibility, for large enough r,,
to make the numerator J negative, while keeping the
denominator positive. Thus, the chirality, if strong enough,
is expected to lead to a repulsive Casimir force. This
expectation is confirmed by the numerical evaluation of
the interaction energy per unit area as shown in Fig. 1.
Indeed, for a large enough chirality parameter, w,; =
w,» = 0.7wg, we have a very interesting situation of an
attractive force in the range d > d, (where in the present
case dy = 0.0586¢/wy) and a repulsive case for d < d).
Thus, a stable equilibrium distance emerges, d = d,, remi-
niscent of the bond length in a diatomic molecule. There is
a critical value of w,, w, = w, such that for w, < 0
there is no repulsive regime for any value of d, while for
w, > ¢, there is a distance d,, a function of w,, dy(w,),
such for d < dy(w,.) the force is repulsive. For the numeri-
cal values used in our present case, the critical value of w¢
is equal to w¢ = 0.612wy for a(= A) = 0. As shown in
Fig. 2(a), the critical value w, is a function of the & with its
minimum value w¢ = 0.607 obtained for « =~ —0.09.
Furthermore, the relation d,, versus w, (for w, > w%) is
an increasing almost linear function of w,, as shown in
Fig. 2(b).

The question raised by the present novel approach to a
possible repulsive Casimir force is whether real chiral
metamaterials can be fabricated with w, larger than the
critical one w¢. Our own chiral metamaterial presented in
Ref. [12] has w, = 0.3w¢. However, this metamaterial was
designed and fabricated before the critical importance of
chirality for stable Casimir nanolevitation was even sus-
pected; thus, there is room for new designs to raise the
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FIG. 2 (color online). (a) The critical value of chirality w
versus a(= A), for two identical CMM plates. (b) The equilib-
rium distance kyd, versus w, for « = A = 1073, For w, >
0% = 0.612wpg, the value of the equilibrium distance kyd,
corresponds to the minimum of the energy as shown by the
open circle curve in Fig. 1.

value of w, possibly above the critical value. We are
currently working on this theme. We do not know whether
or not general physical considerations restrict the size of
the chirality factor w, and thus we cannot be sure whether
the critical value of w¢, is reachable. Models based on a
single loop (see the books of Lindell et al. [15] and
Serdyukov et al. [16]) produce a relation between the
electric, «,,, the magnetic, «,,,,, and the cross polarizabil-
€S, ey Xl ApeQupm = Qe @pe. This relation, valid
when w,, = Wg = W, Vi = Yr = Vi and 0y = a =
0, A # 0, shows that the critical value w¢ is almost reach-
able under the optimum condition A — w?/w5%.

In Fig. 3 we present results for the energy per unit area
E/A versus the dimensionless distance kqd for chiral meta-
materials with w(w) given by Eq. (1) with @ = 0 and A =
0.2. We repeat here this choice violates the physical re-
quirement of u(w)— 1 as w — oo. Nevertheless, we
present these results here in order to show that unphysical
frequency dependence of the response functions may pro-
duce the resulting behavior which is qualitatively different
from that presented in Fig. 1 in the sense that now two
equilibrium points, d, and d, (d; < d,), may appear, the
first is unstable equilibrium and the second is stable equi-
librium. Furthermore, one cannot exclude the possibility
that a more complicated w(w) satisfying the condition
m(o0) = 1 and producing results as those in Fig. 3 may
exist. In spite of this unphysical behavior of (o)
(m(00) = 0.8 instead of u(o0) = 1), one expects to pro-
duce no repulsive force if regular metamaterials (with no
chirality) are employed. The reason is that both of the
interacting plates are mainly nonmagnetic with u(i¢) <
1 < e(i€) at all frequencies. For a not so large chirality
[w, = 0.94 (circles)], one can easily see from Fig. 3 there
is only an attractive Casimir force for all distances.
However, as chirality increases, [w, = 0.96 (squares)],
the energy tries to develop a minimum, and the Casimir
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FIG. 3 (color online). Casimir interaction energy per unit area
E/A (in units of hckg) versus kod of the two identical CMM
plates configuration for different chiral strengths w,’s. a = 0,
A=02, 0, =0,0, = 0w = Op, Ve = ¥Ym = Ve = 0.05wg,
w, = wg.
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force corresponding to the slope of the energy becomes
smaller. At w, = 0.98 (diamonds), there is a minimum at
kod, = 0.21 and a maximum at kyd; = 0.09; the peak value
of the energy is less than zero, the energy value at kod =
oo, If chirality increases further, w, = 1.00 (triangles), the
sign of the energy is reversed and becomes positive in a
certain range. This is an interesting case that gives a
repulsive Casimir force within a range of distances be-
tween d; and d,. It forms a potential barrier to block the
two interacting plates sticking to each other. Similar results
to those in Fig. 3 were also obtained for the case where we
used e(w) =2 — w?2/(w?> — w2 + iyw). This frequency
dependence is obtained experimentally [9] for realistic
metamaterials, but only close to the resonance behavior;
such a dependence extended to w — oo violates the con-
dition of €(w) — 1 as w — oo.

In discussing these results we must keep in mind that for
kod < 1 the main contribution to the integral in E(d)
comes from large ¢ and kj values with the ratio k/& >
1, as argued by Lifshitz et al. [17] and confirmed by our
numerical calculations. Under these conditions k =~ k;; and
the integrand in E(d) takes the form f(& e 2M19). By
setting x = 2k d, it follows immediately that E(d)/A o
d™? and F(d)/A « d3; the contribution of the chiral
term to f(&, e™¥) is negative and, thus, for large enough
chirality the force in the d — 0 limit becomes repulsive.
On the other hand, in the opposite limit d — o0, because of
the factor e ?X¢, the main contribution to the integral
comes from the range 0= ¢ < (c/d) and 0 <k =<
(d'), where the integrand tends to a constant correspond-
ing to the £ = 0 values of €(0) > 1, u(0) =~ 1, and x(0) =
0. Thus in this d — oo limit E(d)/A = d~3 and F(d)/A =
d~* and the force is always attractive, since essentially
only €(0) matters. This analysis shows that it is crucial to
employ the correct limiting values of €(i¢), w(i&), x(ié) as
& — o0 and ¢ — 0, since these values determine the be-
havior of E(d)/A in the limit d —0 and d— oo,
respectively.

In this work we have extended the Lifshitz theory to
calculate the Casimir force by including chirality terms for
the first time. We have shown that the chirality, if strong
enough, is of critical importance in producing nanolevita-
tions under realistic frequency dependence and correct
limiting values of e€(w) and w(w). Note, the previous
calculations claiming repulsive Casimir force between
metamaterials separated by vacuum have been achieved
at the expense of nonrealistic frequency-dependence and/
or limiting values of €(w) and w(w). Thus, CMMs might
possibly be the main candidates to achieve experimentally
the goal of Casimir repulsion, which might open up many
opportunities for application.
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