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The fixed point structure of the renormalization flow in higher derivative gravity is investigated in terms

of the background covariant effective action using an operator cutoff that keeps track of powerlike

divergences. Spectral positivity of the gauge fixed Hessian can be satisfied upon expansion in the

asymptotically free higher derivative coupling. At one-loop order in this coupling strictly positive fixed

points are found for the dimensionless Newton constant gN and the cosmological constant �, which are

determined solely by the coefficients of the powerlike divergences. The renormalization flow is asymptoti-

cally safe with respect to this fixed point and settles on a �ðgNÞ trajectory after Oð10Þ units of the

renormalization mass scale to accuracy 10�7.
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Higher derivative gravity in four dimensions comes
close to realizing a renormalizable quantum theory of
gravity. Compared to the Einstein-Hilbert action two addi-
tional interaction monomials are added containing the
independent curvature invariants with four derivatives of
the metric tensor. The resulting gravity theory is perturba-
tively renormalizable to all loop orders [1], which is related
to the strong, 1=p4 type, falloff of the free propagator at
large momenta. With Euclidean signature the action reads

S ¼
Z

d4x
ffiffiffi
q

p �
~�� 1

�2
Rþ 1

2s
C2 � !

3s
R2

�
: (1)

Here q�� is the metric entering the functional integral, C2

is the square of its Weyl tensor, and total derivative terms
like r2R and the integrand of the Gauss-Bonnet term have
been omitted. In terms of the cosmological constant � one

has ~� ¼ 2�=�2 and the parameterization of the other co-
efficients by couplings s;! is chosen for later convenience.

Two main issues need to be addressed in order to pro-
mote (1) to a viable theory of quantum gravity. First, since
perturbation theory (PT) presumably captures only a small
part of the physics content of the theory a formulation that
is renormalizable in the Kadanoff-Wilson sense needs to be
found. Second, taken at face value the free propagator is
problematic from the viewpoint of positivity and one needs
to make sure that physical quantities obey the relevant
notion of unitarity. Schematically the 1=p4 decay arises
from 1=p2 � 1=ðp2 þ s=�2Þ and the second term has nega-
tive norm in the conventional Fock space. The asymptotic
safety scenario [2–5] outlines a route to achieving both
goals. Central to it is the existence of a nontrivial fixed
point for the dimensionless Newton constant, g�N > 0, and
potentially also for the dimensionless cosmological con-

stant, �� � 0. Here gN ¼ �2�2 and � ¼ ��4gN ~�=2 ¼
��2�, where � is the renormalization scale. In addition
the flow of all four dimensionless couplings gN , �, s, !
must be asymptotically safe, that is, bounded for all� with
finite limiting values for � ! 1. Clearly both properties

of the flow are parameterization dependent and as stressed
by S. Weinberg [5] one should ultimately define ‘‘the
coupling constants as coefficients in a power series expan-
sion of the reaction rates themselves.’’
Related recent investigations used the flow equation for

the average effective action � [6] and upon truncation of
the (highly nonlocal) � to originally two later three [7] and
four [8,9] terms in (1) obtained ‘‘hierarchical’’ approxima-
tions to the flow which revealed a nontrivial fixed point
[10] for gN and �. This result is commonly attributed to the
not perturbative nature of the technique, which, however,
rests on a number of working hypotheses [2] whose valid-
ity in this context is hard to assess. In particular only after
the ultraviolet renormalization problem is solved does the
functional renormalization flow match PT by construction
[11]. The recently reported nontrivial fixed point for s [9]
lacks such a basis and may be an artifact.
We now want to argue that if (1) indeed has a nontrivial

fixed point for gN it should be visible already in PT [2]: any
Wilsonian action of the form S� ¼ R

d4x
ffiffiffi
q

p P
i�1uið�Þ�

PiðqÞ with asymptotically safe couplings and scalar inter-
action monomials PiðqÞ of mass dimension �di will for
� ! 1 depend only on �2q��, as uið�Þ ��diu�i . For the
coefficient of the Ricci scalar in S� this is ‘‘as if’’

Newton’s constant has picked up an integer anomalous
dimension �2 along the trajectory connecting infrared to
ultraviolet properties. A typical propagator would thus
scale at low energies like 1=p2 and at high energies like
1=p4. But the latter is precisely the behavior which is in the
realm of PT for (1). On the other hand an anomalous
dimension �2 goes hand in hand with a nontrivial fixed
point for gN . This can be seen by taking into account gN’s
double role as an inessential parameter (‘‘wave function
renormalization constant’’) and as a coupling. The yet-to-
be-determined flow equation will thus naturally be parame-
terized by the anomalous dimension � ¼ � d

d� ln�2 [6], in

which case � d
d� gN ¼ ð2þ �ÞgN , and g�N � 0 if and only

if � ¼ �2 [2]. Finally, we note that s and gN are of degree
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1 in the loop counting parameter @ while the other cou-
plings are of degree zero. Since s turns out to be asymptoti-
cally free in PT [12,13] one can regard the perturbative
expansion as an expansion in powers of s. Then gN may
occur in degree zero ratios s=gN (and in fact it does) and a
putative nonzero fixed point value for gN is well within the
realm of the expansion.

The goal of the present Letter is to report the results of a
computation augmenting the above heuristic argument.
The nontrivial fixed points turn out to be related to the
coefficients of the powerlike divergences in the one-loop
effective action. To define these coefficients a background
covariant operator regularization will be used [14]. Unlike
dimensional regularization (which sees only logarithmic
divergences) such a regulator in principle also allows one
to make contact to nonperturbative results. We write �UV

for the UV cutoff and parameterize the divergent part of the
one-loop background covariant [15] effective action as

�div
1 ¼� 1

ð4�Þ2
Z
d4x

ffiffiffi
g

p ½�4
UV�1þ�2

UVð�2Rþ�2�3Þ
þ lnð�UV=�Þð�1C2þ�2R

2þ�2�4Rþ�4�5Þ�: (2)

Here g�� is the background metric around which q�� is

expanded, q�� ¼ g�� þ f��, and the functional integral

over f�� has been performed. Keeping track of the grading

by the loop counting parameter �1, �2, �4, �5 and �1, �2,
�3 must be real valued functions of s=gN , �, !. Using the
field equations of (1) one sees that �1, �2, �5=�

2 þ 4�4=�
contain only on-shell information and thus must be inde-
pendent of the choice of gauge and field reparameterization
constants. The coefficient �1 and the combination 4�2 þ
�3=� have a special status on which we comment later. To
absorb the divergences we use the nonminimal subtraction
ansatz

~�0 ¼ �4 2�

gN

�
1þ @

ð4�Þ2
�
a10 þ a11 lnð�UV=�Þ

þ a12

�
�UV

�

�
2 þ a13

�
�UV

�

�
4
�
þOð@2Þ

�
;

�2
0 ¼ ��2gN

�
1þ @

ð4�Þ2
�
b10 þ b11 lnð�UV=�Þ

þ b12

�
�UV

�

�
2
�
þOð@2Þ

�
;

(3)

and minimal subtraction with only log terms for s and !
with coefficients c11 and d11. In principle a1i, b1i, c11, d11
can be a power series of unit @ degree of all renormalized
couplings. The field renormalization we parameterize as

q0�� ¼ q�� þ @

ð4�Þ2 lnð�UV=�ÞgN	q�� þOð@2Þ; (4)

where 	 can be a function of s=gN , �, !. Inserting (3) and
(4) into the bare action S0, expanding, and requiring that
the divergent terms equals ��div

1 yields the cancellation

conditions which fix a1i, b1i, i � 0, and c11, d11 in terms of
the �j, �j, but leave a10, b10 unconstrained.

So far the bare couplings �2
0,

~�0 were only assumed to

be � independent. In a Wilsonian interpretation they
should coincide with the running (‘‘renormalized’’) cou-
plings at scale� ¼ �UV. This additional requirement fixes
the subtraction point (3) in uniquely:

�2
0¼! ��2

UVgNð�¼�UVÞ iff b10þb12¼ 0;

~�0¼! �4
UV

�
2�

gN

�
ð�¼�UVÞ iff a10þa12þa13 ¼ 0:

(5)

Using (5) and the solution of the cancellation condition the
flow equations are uniquely determined by the coefficients
�j, �j and 	. One recovers the universal s, ! flow equa-

tions of [12,13,16] and finds for gN , �:

�
d

d�
gN ¼ 2gN þ @

ð4�Þ2 g
2
N½�4 þ 	þ 2�2�; (6)

�
d

d�
� ¼ �2�þ @

ð4�Þ2
gN
2
½�5 þ 4��4 þ�3 þ 4��2

þ 4�1 � ð2�	þ 2��4 ��3Þ�:
The above discussion was framed so as to stress that the
system of flow equations for s, !, gN , � can be derived
without knowing the coefficients � , � explicitly. As a by-
product of the derivation one finds that

�1; �2;
�3

�
;

�4
�
;

�5
�2

;
	

�
; (7)

are polynomials in s=ðgN�Þ and that the last three quanti-
ties cannot have constant terms. Anticipating that s is an
asymptotically free coupling [12,13] it follows that �4 ¼
�5 ¼ 	 ¼ 0 at the UV fixed point s� ¼ 0 so that the fixed
points of (6) are determined by the � coefficients only.
This is the main result of the Letter.
While the � coefficients are known in several gauges

[12,13,16–18] the � coefficients have not previously been
computed. To set up the computational framework a choice
of gauge fixing and of regularization is needed. For the
gauge fixing we use a three parameter harmonic gauge

Sgf ¼ 1

2s

Z
d4x

ffiffiffi
g

p

�Y

��
�; 
�¼r�f��þb1r�f;

Y��¼�1

a
½g��r2þðb2�1Þr�r��R���;

b1¼� 1

4c1

1þ4!

1þ!
; b2¼2c2

3
ð1þ!Þ; (8)

where the gauge condition �ð
� � �Þ has been averaged

with a normalized Gaussian of covariance Y��. The repar-
ameterization of b1, b2 in terms of c1, c2 is such that a ¼
c1 ¼ c2 ¼ 1 corresponds to the so-called minimal gauge
where in the gauge fixed Hessian all terms quartic in r�

except ðr2Þ2 drop out. The ghost action associated with (8)
has kernel ��� :¼ �g��r2 � ð1þ 2b1Þr�r� � R��.

PRL 103, 101303 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

101303-2



In contrast to earlier PT computations we use a back-
ground covariant operator regularization [14] in combina-
tion with the heat kernel. For a (formally self-adjoint)
differential operator A of order 2r our basic prescription
is to replace lnA with Fkr;�r

UV
ðAÞðx; yÞ acting as an integral

operator such that its trace is given by (9). Here z �
Fk;�UV

ðzÞ is a function that depends parametrically on an

infrared cutoff k and an ultraviolet cutoff�UV. Specifically
we take Fk;�UV

ðzÞ ¼ fðz=�2
UVÞ � fðz=k2Þ, for suitable f.

Although conceptually distinct from � we can for the pur-
poses here take 0< rk ¼ � � �UV for some r > 0. The
normalization @zF0;1ðzÞ ¼ 1=z in combination with some

additional properties ensures that functional traces are
properly regularized. In particular Tr lnA is replaced with

TrFkr;�r
UV
ðAÞ ¼

Z 1

0
dt ~Fkr;�r

UV
ðtÞ

Z
dxAðx; x; tÞ; (9)

where Aðx; y; tÞ is the heat kernel of A and ~Fk;�UV
is the

inverse Laplace transform of Fk;�UV
. On a flat background

one can also evaluate the operator trace directly in mo-
mentum space

TrFkr;�r
UV
ðAÞ ¼ X

j

mj

Z d4p

ð2�Þ4 Fkr;�r
UV
ð�jðpÞÞ; (10)

where �j are the spectral values of A and mj their multi-

plicities. Eventually, only certain moments of the cutoff
function enter the results for the � and � coefficients. One
hasZ 1

0
dtt�n ~Fk;�UV

ðtÞ ¼ 1

�ðnÞ
Z 1

0
dzzn�1Fk;�UV

ðzÞ

¼
��2 ln�UV=k; n ¼ 0;
�qnð�2n

UV � k2nÞ 0< n � 2;

(11)

where the qn are positive constants of Oð1Þ.
We define the one-loop effective action by

�1 ¼ 1
2TrFk2;�2

UV
ðH Þ � 1

2TrFk;�UV
ðYÞ � TrFk;�UV

ð�Þ;
(12)

where H is the Hessian of 2sðSþ SgfÞ. In a nongravita-

tional context one usually subtracts from (12) a corre-
sponding contribution from a reference operator. The
reference operator is chosen so as to represent the non-
interacting system and, in particular, removes quartic di-
vergences. In gravity such a reference system bears on a
definition of self-energy and it is unlikely that a preferred
choice exists. The Gaussian normalization condition con-
ventionally adopted for the kinematical measure over
‘‘metrics modulo diffeomorphisms’’ [19] amounts to hav-
ing no subtractions in (12). Using this here for the time
being one finds that neither �1 nor 4�2 þ�3=� are gauge
independent. A more refined definition of the measure
should render 4�2 þ�3=� gauge independent and we
shall formulate the flow equations in terms of this quantity.

Another modification of (12) would be to add to H its
Vilkovisky–de Witt (VdW) correction [20]. We verified
that the setting used here correctly reproduces the VdW
form of �5 [17] upon adding the correction, but that it
leaves �1, �3 unaffected.
The evaluation of the divergent part of (12) now amounts

to the determination of the short time asymptotics for the
heat kernels of the operators H , Y, and �. Both Y and �
are second order operators with trivial principal part, for
which tabulated heat kernel coefficients are available [21].
In a curved background and in a generic gauge (8) H is a
very complicated operator for which no tabulated results
are available; moreover there is no choice of gauge pa-
rameters for which its principal part is trivial. We thus
resorted to an evaluation on a flat background in a generic
gauge which allows one to determine �1, �3 (and as a
check �5) in a generic gauge. Finally, �2 can be obtained
by transversal-traceless decomposition of the Hessian on
maximally symmetric backgrounds. As a check we also
evaluated �2 directly on a generic background in minimal
gauge, where the principal part is a nontrivial but constant
matrix.
The evaluation of (12) on a flat background reveals

that—in contrast to the common wisdom about the system
and in contrast to the situation in Einstein gravity—there is
no problem with positivity. The Hessian on a flat back-
ground can be diagonalized exactly and the positivity of
the spectrum can be investigated. There are four spectral
values �1ðpÞ, �2ðpÞ, �3ðpÞ, �4ðpÞ, with multiplicities 5, 3,
1, 1, respectively. The last two are nonrational functions of
the momenta with a large p expansion of the form
p�4�iðpÞ ¼ �i þOðsp�2Þ (which also applies to �1, �2,
where the expansion terminates). Spectral positivity is
decided by the signs of the �i and one can show

�i > 0 for � 1<!< 0; c1 > 1=4; c2=a > 0:

(13)

The interval �1<!< 0 is invariant under the renor-
malization flow (6) and contains the known UV fixed

point !� ¼ ð7 ffiffiffiffiffiffiffiffiffiffiffi
6049

p � 549Þ=200 � �0:0228 [12,13,18].
Hence, for � sufficiently large no problem with positivity
of the propagator (i.e., the inverse Hessian) ever arises.
As noted before, the nontrivial fixed point of (6) is

determined by the � coefficients only. Anticipating that
also �3 is linear in s=ðgN�Þ one sees that (6) has a non-
trivial fixed point at

g�N
ð4�Þ2 ¼ � 1

��
2

; �� ¼ � ��
1

2��
2

; (14)

where ��
2
:¼ �2j!�;s¼0, �

�
1
:¼ �1j!�;s¼0. The scheme de-

pendence enters only through the qn of Eq. (11).
Importantly, these fixed points come out as robustly
positive.
The results for �1, �2, �3 in a generic gauge are too

bulky to be reported here. For simplicity we present them
here in minimal gauge. First, the fixed point values
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��
2 ¼ �1:9867q1 � 0:09836q1=2;

��
1 ¼ 5:8114q1 � 6:1026q2;

(15)

where for all cutoffs usually considered q1=q2 � 2.
To study the flow (6) itself we now make the choice

	 ¼ ��4 þ�3=ð2�Þ; (16)

which gives rise to (gN, �) flow equations depending only
on the gauge independent � combination, �2 þ�3=ð4�Þ
and �1 without affecting the fixed point (14). One has
�1 ¼ u1ð!Þ, �2 þ�3=ð4�Þ ¼ u2ð!Þ � s

gN�
u3ð!Þ, with

u1ð!Þ¼q1
26!�1

12!
�q2

�
9

2
þ9

8

1

ð1þ!Þ2þ
4

9
ð1þ!Þ2

�
;

u2ð!Þ¼�
ffiffiffiffi
�

p
8

q1=2

�
3ð1þ!Þ�!þ2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ!

3!

s �

�q1
87þ118!þ56!2þ16!3

72ð1þ!Þ ;

u3ð!Þ¼3
ffiffiffiffi
�

p
64

q1=2

�
3�

�
�1þ!

3!

�
3=2

�
: (17)

In combination with the known �1, �2, �5 þ 4��4
[12,13,16–18] this defines the flow (6).

Figure 1 shows the result of a numerical integration after
rescaling gN � ð4�Þ2gN , s � ð4�Þ2s, with sð1Þ ¼ 1,
!ð1Þ ¼ �1=2, and cutoff fðyÞ ¼ � lnð1þ 1=yÞ þ ð1þ

yÞ�1 þ 2�1ð1þ yÞ�2 [14] satisfying q1=2 ¼ 3
ffiffiffiffi
�

p
=4, q1 ¼

1=2, q2 ¼ 1=4. The initial data for gN , � were varied in the
range [0, 2]. One sees that gN, � are initially nonmonotonic
functions of �, monotonic behavior sets in quickly but
nonuniformly in the initial data. At � ¼ 10 the memory of
the initial data is erased to accuracy 10�7 and the merged
trajectory eventually hits the fixed point located at g�N �
1:3697, �� � 0:9451, however with 1% deviations even at
� ¼ 109.
In summary, higher derivative gravity has nontrivial

fixed points for gN and � with respect to which the renor-
malization flow is asymptotically safe. By means of the
improved perturbative framework (3), (5), and (9) they can
be identified already in one-loop PT. A complete diagonal-
ization of the Hessian for flat backgrounds reveals subject
to (13) a strictly positive spectrum, rendering fourth order
gravity a viable candidate for a fundamental field theory of
gravity.
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FIG. 1 (color online). Wilsonian one-loop flow (5), (6), and
(17).
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