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We show that the equations of motion of generalized theories of gravity are equivalent to the

thermodynamic relation �Q ¼ T�S. Our proof relies on extending previous arguments by using a

more general definition of the Noether charge entropy. We have thus completed the implementation of

Jacobson’s proposal to express Einstein’s equations as a thermodynamic equation of state. Additionally,

we find that the Noether charge entropy obeys the second law of thermodynamics if the energy-

momentum tensor obeys the null energy condition. Our results support the idea that gravitation on a

macroscopic scale is a manifestation of the thermodynamics of the vacuum.
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The profound connection between gravitation and ther-
modynamics was first suggested by the discovery of black
hole (BH) entropy [1] and Hawking radiation [2]. Over a
decade ago Jacobson proposed [3] to explain this connec-
tion by deriving the Einstein’s equations from a thermody-
namic equation of state using the proportionality relation
of entropy and area for all local acceleration horizons.
Elizalde and Silva [4] extended Jacobson’s proof from
the simplest Einstein-Hilbert theory of gravity to more
general theories which depend on the Ricci scalar, by using
the Noether charge entropy [5] rather than assuming that
the entropy satisfies a fixed theory-independent proportion-
ality relation to the area. These results support the idea that
gravitation on a macroscopic scale is a manifestation of the
thermodynamics of the vacuum state of quantum field
theory.

If the relation between gravity and thermodynamics is
correct, then it should apply to anymetric theory of gravity.
Perhaps previous demonstrations of such a relationship
were accidental, due to the simplicity of the theory? In
order to strengthen the confidence in the idea and show that
previous arguments did not result from an accidental rela-
tionship we have extended previous proofs to theories of
gravity whose Lagrangian depends on the most general
gravitational and matter couplings. The key to proving
such a relation is to correctly identify the three quantities
in the thermodynamic relation �Q ¼ T�S, the heat trans-
fer �Q, the temperature T, and the entropy �S.

Generalized theories of gravity appear frequently in the
context of effective gravity theories of string theory and
supergravity. There the higher-derivative terms originate
from integrating out massive modes or from taking into
account quantum corrections. The Lagrangian density of
such theories can be expressed as a functional of the metric
gab, its Riemann tensor Rabcd (and its derivatives) and the
matter fields (and their derivatives) which are denoted
collectively as �. As shown in [6], the total Lagrangian

density Lðgab; Rabcd;�Þ can be treated as if gab and Rabcd

are independent variables although Rabcd is not an inde-
pendent field and
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We nowwish to express the Lagrangian as a sum of three
terms: a matter Lagrangian Lmðgab; �Þ which does not
depend on the Riemann tensor, a gravity Lagrangian
LGðRabcd; R

a
bcd; . . .Þ which depends only on the

Riemann tensor (and its derivatives) with any combination
of lowered or raised indices and an interaction Lagrangian
which depends on both Lintðgab; �; Rabcd; R

a
bcd; . . .Þ. In

particular, the fact that LG is independent on the metric

gab is, again, due to the fact that @L
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counterparts with any number of indices of the Riemann
tensor either raised or lowered, differ only in index
positions. The final result is L¼Lmðgab;�Þþ
LGðRabcd;R

a
bcd; . . .ÞþLintðgab;�;Rabcd;R

a
bcd; . . .Þ. Here

the dots stand for the Riemann tensor with all possible
combinations of raised and lower indices, which includes
all possible contractions among them.

We define the energy-momentum tensor as a sum of the
matter contribution and the interaction contribution, Tab ¼
Tab
m þ Tab

int , where the matter contribution is defined in the

conventional way Tab
m ¼ �ð2= ffiffiffiffiffiffiffi�g
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For later use we note that by using Eq. (1) and the fact that
Lint and LG are scalars, it follows that
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As a simple example let consider the case of Einstein’s
gravity and a matter Lagrangian without an inter-
action Lagrangian L ¼ 1

16�GRþLm. In this case Lint ¼
0 and thus the only contribution to the energy-momentum
tensor comes from the matter Tab ¼ �ð2= ffiffiffiffiffiffiffi�g

p Þ �
@ð ffiffiffiffiffiffiffi�g
p

LmÞ=@gab. The Ricci scalar can be expressed as

R ¼ Rab
ab which does not depend on the metric. Since
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the equations of motion (3) become Tab ¼ 2 1
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sion for the derivative with respect to the Riemann tensor
we find Tab ¼ 2 1

16�G ½12 ðgprgqa � gpagqrÞRpqr
b � 1

2g
abR�,

which is indeed the well-known Einstein equation
8�GTab ¼ Rab � 1

2g
abR. We have verified that Eq. (3)

agrees with the conventional derivation also for the more
complicated cases when Lint does not vanish and LG

depends in a general way on the Riemann tensor (and its
derivatives).

Since our proof of the equivalence between the
Einstein’s equations and the thermodynamic relation for
generalized theories of gravity is based on Jacobson’s
proof for the Einstein theory [3], we briefly recall the
fundamental assumptions that were first made by
Jacobson: that according to Einstein’s equivalence princi-
ple any free-falling local observer can describe space-time
in the vicinity of her location as flat. She can also choose
the local spacelike area element perpendicular to her

worldline at a given point p0. In this setting, the past
horizon of p0 is called the local Rindler horizon at p0

and one can define an approximate Killing field generating
a boost at p0. Since local Rindler horizons are null and act
as causal barriers, they have an entropy S. This entropy
measures the correlation with degrees of freedom beyond
the horizon and is proportional to the area. A local accel-
erated observer hovering just inside the horizon sees an
energy flow across the causal barrier and a local tempera-
ture T, the Unruh temperature [7].
To extend Jacobson’s proposal to all metric theories of

gravity we need specific definitions for the entropy and the
temperature of a causal barrier in generalized theories of
gravity. While these quantities have not been defined for
causal barriers in such theories, they have been precisely
defined for BH’s, so we turn to BH thermodynamics to
obtain precise definitions.
We begin with the entropy. We assume that the causal

barrier entropy in generalized theories of gravity is the
Noether charge entropy (NCE) [5]. This assumption was
first made in this context by Elizalde and Silva [4] and is
based on the fact that we expect the causal barrier entropy
to be proportional to the area, even in cases where the
gravity theory is general. Since we have already shown in
[8] that for BH’s the NCE is equal to a quarter of the
horizon area in units of the effective gravitational coupling,
the assumption that causal barrier entropy in generalized
theories of gravity is the NCE seems reasonable.
For the definition of the Unruh temperature in general-

ized theories of gravity we again turn to BH thermody-
namics. BH temperature in any theory of gravity is related
to the Killing vector field �a by

�brb�a ¼ ��a; (6)

� being the surface gravity, related to the temperature by

� ¼ 2�T: (7)

We assume that the Unruh temperature satisfies a similar
relation, with � being the observer’s acceleration.
We now use these ideas to express the energy and

entropy for causal barriers in generalized theories of
gravity.
Recalling the point p0 with its associated local Rindler

horizon H , let us take an accelerated observer hovering
just inside the horizon. The energy measured by the ob-
server is E ¼ R

H Tab ~�
a�b where the integration is over a

short segment of a thin pencil of horizon generators cen-
tered on the one that terminates at p0. The normalized
Killing field ~�a is null on the horizon and normalized to
have unit surface gravity, i.e. �a ¼ �~�a. The vector �b ¼
~�b� is a (D� 1) volume form, � being the volume
element. For a constant �b the variation of energy is

�E ¼
Z
H

�crcðTab ~�
aÞ�b: (8)
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Since �crc ~�
a ¼ �~�a ¼ �a

�E ¼
Z
H

�crcTab ~�
a�b þ

Z
H

Tab�
a�b: (9)

From Eq. (9) we deduce that there are two different con-
tributions to �E. The first contribution �drdTab is related
to real flux of energy that crosses the area. This flux is not
directly related to the existence of the causal barrier and
does not contribute to the causal barrier entropy. Thus, in
agreement with [3], we deduce that the heat variation �Q
that is associated with the causal barrier is

�Q ¼
Z
H

Tab�
a�d: (10)

We assume that the entropy associated with the causal
barrier is the NCE [5]:

S ¼ � 1

T

I
@H

@L
@Rabcd

�̂ab�cd; (11)

where the integration is over a surface enclosing the vol-
ume H . In Eq. (11) �cd is a (D� 2) volume form, �cd ¼
�̂cd ��, �� is the area element on a cross section of the horizon
and �̂cd is the bi-normal vector to the area element and
�̂cd ¼ rc ~�d.

As pointed out in [9] [Eq. (8)], any Wcd satisfies
dðWcd�cdÞ ¼ 2rcW

cd�d. Integrating over some volume
V this becomes

H
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cd�d. Thus,
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Now that the integral is over the volume H , we can
calculate the entropy variation while keeping �d constant,
as in the calculation of the energy variation in Eq. (8):

�S ¼ � 2
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Since we have set the volume vector �d to a constant, the
entropy variation does not depend on variation of the area,
as opposed to Jacobson’s assumption in [3].

Having identified all the ingredients in the thermody-
namic relation

�Q ¼ T�S; (14)

we can proceed to show that it is equivalent to the equa-
tions of motion of generalized theories of gravity Eq. (3).

In Eqs. (7), (10), and (13) we have defined the quantities
that appear in the thermodynamic relation (14). Using them
we observe that the thermodynamic relation can only be
valid if

Z
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We will now show that Eq. (15) is indeed valid.
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we can express the integrand of the previous expression as
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on the horizon, since rc�̂ab ¼ �Rabci ~�
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a
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n and
comparing the integrands of both sides of Eq. (15) we
find that Eq. (15) holds if and only if
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Rpqr
b

�
þ gabf; (16)

The freedom in adding the term gabf on the right-hand side
of Eq. (16) exists because on the horizon ~�b is null. The
conservation of energy and momentum fixes this freedom
up to a constant. Taking the divergence of Eq. (16), using
the conservation of the matter energy-momentum tensor
and comparing with Eqs. (4) and (5) we observe that
rbf ¼ �rbLG. Thus f ¼ �LG þ� (for some constant
�) and upon substituting this into Eq. (16) it becomes
identical to the equations of motion Eq. (3).
Turning to the second law of thermodynamics we obtain

an additional interesting result. Equation (15) can be ex-
pressed as

�S ¼ 1

2�

Z
Tab ~�

a ~�b�: (17)

Taking a limit that the volume of integration becomes very
small so we can evaluate the integrand as if it were on the
horizon, we observe that �S � 0 if Tab ~�

a ~�b � 0. Recall
that the energy-momentum tensor satisfies the null energy
condition if TabX

aXb � 0 for all null vectors Xa. As we
just argued since ~�a is null on the horizon, if the energy-
momentum tensor does satisfy the null energy condition
then the NCE satisfies the second law of thermodynamics:

�S � 0: (18)

We may speculate on the relevance of our results to the
issue of the origin of BH entropy. We have assumed that
the causal barrier entropy behaves in a similar way to BH
entropy. Since causal barrier entropy is associated with the
entanglement with degrees of freedom hidden behind it, we
may turn the logic around and speculate that BH entropy
also results from entanglement with hidden degrees of
freedom. Further investigation may provide a clearer
understanding of the suggestive relation between Noether
charge entropy and entanglement entropy.
In conclusion, we have shown the equivalence of the

equations of motion and thermodynamics for generalized
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theories of gravity and that the NCE satisfies the second
law when the relevant energy conditions are met.
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