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We establish a relation between entanglement of a many-body system and its diffractive properties,

where the link is given by structure factors. Based on these, we provide a general analytical construction

of multiqubit entanglement witnesses. The proposed witnesses contain two-point correlations. They could

be either measured in a scattering experiment or via local measurements, depending on the underlying

physical system. For some explicit examples of witnesses we analyze the properties of the states that are

detected by them. We further study the robustness of these witnesses with respect to noise.
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Multipartite entanglement is a remarkable property of
quantum systems that outlines fundamental discrepancies
to classical physics and occurs at the interface between
quantum information and many-body physics. Entangle-
ment witnesses serve as a useful tool to verify the presence
of multipartite entanglement. Their experimental imple-
mentations via local measurements are presented, e.g., in
Refs. [1–6]. Here we introduce a method to detect multi-
partite entanglement also in a scattering experiment, when
in general no local access to the individual subsystems is
possible.

In this Letter we present a construction for multipartite
entanglement witnesses based on linear combinations of
operators associated with structure factors. Structure fac-
tors consist of two-point correlations, and have been
widely used in condensed-matter physics. They are mea-
surable in scattering experiments, e.g., via neutron scatter-
ing in condensed-matter systems, or via light scattering off
optical lattices. For example, structure factors are em-
ployed in experiments [7,8] that investigate the crystal
structures of particular molecules that can be described
via Hamiltionians of spin chains. One-particle spectral
functions are investigated for various materials in [9–11].
Also, much theoretical work on determining the structure
factor and the related spectral weights of particular spin
chain models has been done, numerically and analytically
[12–16]. Moreover, the structure factor plays an important
role in the physics of atoms in optical lattices since it is
related to the visibility of the interference pattern [17].
Impurity contributions to the static structure factors have
been predicted in [18]. In this Letter we show how witness
expectation values can be determined from global diffrac-
tive properties, via the corresponding structure factors.
Therefore, we establish a link between multipartite entan-
glement and diffractive properties of many-body systems,

based on two-point correlations. Let us note that expecta-
tion values of our witnesses can be also measured locally
[19] in any suitable physical system where individual
subsystems are accessible, e.g., entangled photons.
We consider a multipartite quantum system consist-

ing of N subsystems. The construction of our entangle-

ment witnesses is based on the operator Ŝ��ðkÞ :¼P
i<je

ikðri�rjÞS�i S
�
j , where i, j denote the ith and jth spins,

ri, rj their positions, and �, � ¼ x, y, z. Here, S�i are the

spin operators and k is the wave-vector transfer, where we
consider the one-dimensional situation. The expectation
value of this operator is the static structure factor (apart
from a different summation and normalization, this form
appears in, e.g., Ref. [15])

S��ðkÞ ¼ X
i<j

eikðrj�riÞhS�i S�j i; (1)

which is a function of k. The dynamic formulation of the
structure factor describes the ‘‘response’’ of the probed
system [20]. Below, we will normalize the distance be-
tween two neighboring spins to one. The distance between
spins is either defined via the periodic structure, or—in a
nonperiodic situation, like, e.g., for entangled photons—
via the labels of the spins. So far we have considered
general spin operators. In the following we will focus on
the case of spin 1=2, where S� corresponds to the Pauli
operator ��.
An entanglement witness is defined as a Hermitian

operator W that detects the entanglement of a state � if it
has a negative expectation value for this state, hWi� ¼
Trð�WÞ< 0 while Trð�WÞ � 0 for all separable states �
[21,22]. We construct a class of entanglement witnesses
using the static structure factor operator as

WðkÞ :¼ 1N � �ðkÞ; (2)
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where 1N is the identity operator on the 2N-dimensional
Hilbert space and

�ðkÞ ¼ 1
2½ ��ðkÞ þ ��ð�kÞ�; (3)

with

��ðkÞ ¼ 1

BðN; 2Þ ½cxŜ
xxðkÞ þ cyŜ

yyðkÞ þ czŜ
zzðkÞ�: (4)

Here ci 2 R, jcij � 1, and BðN; 2Þ is the binomial coeffi-
cient. The restriction to real coefficients ci ensures that the
witness operator is Hermitian, while the choice jcij � 1
ensures normalization. The meaning of the parameter k
depends on the physical system: for the detection of en-
tanglement for states of multiple photons, it just fixes a sign
rule for the two-point correlation terms of the witness and
has no further physical meaning. For spin chains, as men-
tioned, k is the wave-vector transfer in scattering experi-

ments. Here the entanglement witness can be determined
via a readout of values of the structure factor for various k.
The expectation value of the witness is hWðkÞi ¼
1� h�ðkÞi. The crucial point is to show that for all product
states �N

p :¼ �1 � �2 � . . . � �N we have hWðkÞi�N
p
� 0

(due to convexity the same is true for separable states
that are a convex combination of projectors onto product
states). It is helpful to remember the Bloch vector form of a
qubit state,

�i¼1

2

�
1þX

�

ni��
�

�
; ðnixÞ2þðniyÞ2þðnizÞ2�1: (5)

The product state �N
p should then be regarded as a

product of Bloch decompositions (5). In this way we obtain
the following bound on the expectation value of �ðkÞ for
product states:

jh�ðkÞi�N
p
j ¼ 1

BðN; 2Þ
��������
X
i<j

½cx cosðkmijÞh�x
i �

x
ji þ cy cosðkmijÞh�y

i �
y
ji þ cz cosðkmijÞh�z

i�
z
ji�

��������
� 1

BðN; 2Þ
X
i<j

ðjnixjjnjxj þ jniyjjnjyj þ jnizjjnjzjÞ � 1; (6)

where mij ¼ rj � ri 2 N. Thus, for product states we
have hWðkÞi�N

p
� 0.

Which states can be detected by WðkÞ? For k ¼ 0 sym-
metric states like the Dicke states can be detected. These
states are defined as pure states that are a superposition of
all possible permutations of l excitations (states j1i) in N
particles and denoted as jN; li. Examples are the W state

jWi¼ j3;1i¼1=
ffiffiffi
3

p ðj001iþj010iþj100iÞ or j4;2i¼1=ffiffiffi
6

p ðj0011iþj0110iþj1100iþj1001iþj1010iþj0101iÞ.
Dicke states are detected by the witness (2) with cx ¼ cy ¼
1, cz ¼ �1. To see this, we calculate the expectation value
h�ð0Þi of Eq. (4) for the Dicke states jN; li. Entanglement
is detected if hN; lj�ð0ÞjN; li> 1. For the term Szzð0Þ we
get hN;ljŜzzð0ÞjN;li¼ ð4hJ2z i�NÞ=2¼½ðN�2lÞ2�N�=2.
Here we have used the fact that the collective spin operator
J� :¼ 1=2

PN
k¼1 �

�
k is given by Ŝ��ð0Þ ¼ ð4J2� � N1NÞ=2.

For Sxxð0Þ and Syyð0Þ we obtain hN; ljŜxxð0ÞjN; li ¼
hN; ljŜyyð0ÞjN; li ¼ lðN � lÞ. Since for the Dicke states
we have Sxxð0Þ ¼ Syyð0Þ � 0 the chances to detect entan-
glement are best for cx ¼ cy ¼ 1. For the case cx¼cy¼1,

cz ¼ �1 we use the notation ~�ð0Þ and find

hN; lj~�ð0ÞjN; li ¼ 4lðN � lÞ � ðN � 2lÞ2 þ N

NðN � 1Þ : (7)

In particular, for an even particle number N and l ¼ N=2

the expectation value (7) becomes h~�ð0Þi ¼ ðN þ 1Þ=ðN �
1Þ> 1 and for odd N and l ¼ ðN � 1Þ=2 or l ¼ ðN þ 1Þ=2
we get h~�ð0Þi ¼ ½NðN þ 1Þ � 2�=NðN � 1Þ> 1, and thus
these states are always detected. Also other Dicke states

are detected, e.g., j6; 2i where h6; 2j~�ð0Þj6; 2i ¼ 17=15 �
1. Choosing different coefficients cx;y;z in the construction

of the witness (2), other states can be detected. An interest-
ing example for four particles is the superposition between
two Greenberger-Horne-Zeilinger (GHZ) states, ðcos�Þ=
2ðj0011iþj1100iÞ�ðsin�Þ=2ðj0000iþj1111iÞ. This state
is detected for �=4< �< �=2 if we choose cx ¼ �1,
cy ¼ cz ¼ 1 (minus sign) or cx ¼ 1, cy ¼ �1, cz ¼ 1

(plus sign). In Ref. [23] an experimental preparation of a
four-qubit cluster state is reported, and from the presented
method it seems likely that also the above GHZ super-
position states can be prepared with this setup. Other
detected symmetric states are superpositions of Dicke
and GHZ states, e.g., for four particles cos�j4;2i�sin�=ffiffiffi
2

p ðj0000iþj1111iÞ is detected for arccos3
ffiffiffiffiffiffiffiffiffiffiffi
2=19

p
< �<

�=2 with the witness coefficients cx ¼ �1, cy ¼ cz ¼ 1

(minus sign) and cx ¼ 1, cy ¼ �1, cz ¼ 1 (plus sign).

So far we have considered the case k ¼ 0 only. If we
choose k ¼ � in the construction of the witness WðkÞ (2),
still more entangled states can be detected. Note that in this
case the witness is no longer symmetric under particle
exchange. An example of detected states are nonsymmetric
Dicke states with additional phases. Choosing Wð�Þ with
cx ¼ cy ¼ cz ¼ 1 we can detect the four-particle and six-

particle entangled states

jDph
4 i ¼ 1ffiffiffi

6
p ðj0011i þ j1100i þ j0110i þ j1001i

� j0101i � j1010iÞ; (8)
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jDph
6 i¼ 1ffiffiffiffiffiffi

20
p ðj111000iþj001110iþj010101iþj011010i

þj100011iþj100110iþj101001iþj101100i
þj110010iþj001011i�j000111i�j110001i
�j101010i�j100101i�j011100i�j011001i
�j010110i�j010011i�j001101i�j110100iÞ:

(9)

In general, all ‘‘phased’’ Dicke states jN; lphi, i.e., Dicke
states with different signs before terms that correspond to
even and odd permutations of 0s and 1s, and with l ¼ N=2
for evenN and l ¼ ðN þ 1Þ=2 or l ¼ ðN � 1Þ=2 for oddN,

are detected. Consider, e.g., the state j6; 3phi ¼ jDph
6 i (9).

Starting with the state j111000i, all even permutations, i.e.,
an even number of transpositions of neighboring spins,
have a positive sign, and all odd permutations have a
negative sign. This scheme can be generalized to construct
the general phased Dicke states jN; lphi of N particles and
l excitations.

It is not necessary that all coefficients cx;y;z are non-

vanishing. The states jN; lphi for the mentioned particular
values of l are already detected by the witness Wð�Þ with
cx ¼ cy ¼ 1, cz ¼ 0. This can be seen as follows: To

determine hN; lphjŜxxð�ÞjN; lphi and hN; lphjŜyyð�ÞjN; lphi
we note that we get exactly the same expressions as for the
Dicke states, since the possible minus signs of the two-
point correlation terms �x

i �
y
j and the minus signs of the

phased Dicke states always exactly cancel out, due to the
correspondence of an odd number of transpositions in the
state and odd distance-terms rj � ri in the structure fac-

tors. Thus for the phased Dicke states jN; lphi we obtain

hŜxxð�Þi ¼ hŜyyð�Þi ¼ lðN � lÞ, just as for the Dicke
states jN; li in the previous paragraph. For phased Dicke
states with even N and l ¼ N=2 and for �ð�Þ with cx ¼
cy ¼ 1, cz ¼ 0 we get h�ð�Þi ¼ 2hŜxxð�Þi ¼ N=ðN �
1Þ> 1, and for odd N with l ¼ ðN þ 1Þ=2 or l ¼ ðN �
1Þ=2 we obtain h�ð�Þi ¼ ðN þ 1Þ=N > 1. Therefore these
states are always detected.

In order to prove that a given state carries genuine
multipartite entanglement, one has to determine its mini-
mal expectation value for any biseparable cut of the multi-
qubit states. This task can in general only be performed
numerically. Using the routines provided in Ref. [24], we
find the following results for the witnesses for phased
Dicke states, when choosing k ¼ � and cx ¼ cy ¼ cz ¼
1: for 4 qubits, h�ð�Þibisep � 1:187 and for 6 qubits,

h�ð�Þibisep � 1:158, where these are upper bounds for all

biseparable cuts. Comparing these numbers with the pre-
vious paragraph shows that there is a considerable range of
genuine multipartite entangled states to be detected with
our method.

The importance of the parameter k for the detection of
different types of states is remarkable: The general phased

Dicke states jN; lphi that include the states (8) and (9), are
not detected by Wð0Þ for any choice of the coefficients cx,
cy, and cz, and Wð�Þ does not detect the ‘‘usual’’ Dicke

states.
Furthermore, we want to study the robustness of the wit-

ness in Eq. (2) under the influence of noise. In particu-
lar, we consider two depolarizing channels: one that acts
collectively on all qubits, which efficiently results in the
addition of white noise to the multipartite state, and one
that affects the single qubits independently, i.e., that adds
white noise to a single qubit �s; �s;dp ¼ ð1� qÞ�s þ
q1=2.
We study the collective depolarizing channel first. The

Dicke states jN;N=2i then change accordingly to
p1N=2

N þ ð1� pÞjN;N=2ihN;N=2j. The witness Wð0Þ
with cx ¼ cy ¼ 1, cz ¼ �1 detects entanglement of this

state for 0 � p < 2=ðN þ 1Þ. The robustness decreases
with a growing number of qubits N. In Ref. [25], the
robustness of certain witnesses against the collective de-
polarizing channel, corresponding to cz ¼ 0, has been
studied. These witnesses, that can detect Dicke states of
the form jN;N=2i, allow noise with p < 1=N. Thus, add-
ing the z-direction measurement to the witness improves its
robustness against white noise. For the general ‘‘phased’’
Dicke states and using the witnessWð�Þ with cx ¼ cy ¼ 1

and cz ¼ 0, we obtain 0 � p < 1=N for entanglement
detection. Again, a greater robustness can be achieved
when an additional z-direction term, cz ¼ 1, is introduced.
For the noisy ‘‘phased’’ Dicke state [cf. Eq. (8)], i.e.,

p1=16þ ð1� pÞjDph
4 ihDph

4 j, the witness Wð�Þ with cx ¼
cy ¼ cz ¼ 1 detects entanglement of this state for 0 � p <

4=13. In the case of six particles, it detects entanglement of

the noisy state p1=26 þ ð1� pÞjDph
6 ihDph

6 j [cf. Eq. (9)] for
a parameter interval 0 � p < 6=31. The maximal values of
p are in both cases bigger than 1=N.
In the following we investigate the robustness for the

individual depolarizing channel, where the noise affects
each qubit independently. Since we are interested in ex-
pectation values only, it is convenient to shift the influence
of the Kraus operators Ki characterizing the noise model to
the observable and leave the initial state unchanged. This
is possible because in the operator sum representation of
the channel we have (where the subscript dp denotes

affection by the channel) TrðO�dpÞ ¼
P

iTrðOKi�K
y
i Þ ¼P

iTrðKy
i OKi�Þ ¼ TrðOdp�Þ. Since the individual depola-

rizing channel transforms the Pauli operators as ��
dp ¼

ð1� qÞ��, � ¼ x, y, z (see, e.g., [26]), the two-point
correlation terms of the structure factor simply change to

ð��
i �

�
j Þdp ¼ ð1� qÞ2��

i �
�
j . Thus the observable �ðkÞ in

Eq. (4) is influenced by the channel according to �ðkÞdp ¼
ð1� qÞ2�ðkÞ, and for the expectation value we simply have
h�ðkÞdpi ¼ ð1� qÞ2h�ðkÞi. Thus we can determine the

robustness of WðkÞ, i.e., the region of q for which
h�ðkÞdpi> 1, where entanglement is detected. For the

Dicke states jN;N=2i and cx ¼ cy ¼ 1, cz ¼ �1 for
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Wð0Þ we obtain a robustness region 0 � q < 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þ=ðN þ 1Þp
. For the phased Dicke states

jN;N=2phi and cx ¼ cy ¼ 1, cz ¼ 0 forWð�Þ we find 0 �
q < 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þ=Np

. For cx ¼ cy ¼ cz ¼ 1 we calcu-

lated the four and six particle case [see Eqs. (8) and (9)],

where we find 0 � q < 1� 3=
ffiffiffiffiffiffi
13

p ’ 0:168 for jDph
4 i and

0 � q < 1� 5=
ffiffiffiffiffiffi
31

p ’ 0:102 for jDph
6 i. Both states exhibit

a robustness region that is larger for cz ¼ 1 than for the
cz ¼ 0 case, it therefore seems favorable to add the
z-direction measurement setting also in the case of the
individual depolarizing channel.

While writing this Letter, interesting experimental and
theoretical articles on detecting multiqubit entanglement
of photonic Dicke states appeared online [5,6,27,28]. The
witnesses that were discussed and implemented there can
be seen as specific cases of the general construction pre-
sented here. A detailed noise study for witnesses of Dicke
states that includes the amplitude and phase damping
channels, in connection with the numerical detection of
genuine multipartite entanglement, can be found in
Ref. [28]. Note that a different method for macroscopic
detection of nonseparability, which is valid for a certain
class of spin models, is provided via the magnetic suscep-
tibility, as shown in Ref. [29].

Summarizing, we present a general construction of en-
tanglement witnesses for multiqubit states and establish a
relation to static structure factors—these are macroscopic
quantities which can be determined or measured in a
collective way in various periodic physical systems such
as spin chains. Our approach opens a wide avenue of
possible new connections for experimental detection of
entanglement through scattering, and can lead to a deeper
understanding of entanglement properties in condensed-
matter systems. Explicit constructions of witnesses for
higher spins and eventually continuous variable systems
can follow along the same lines. A connection to dynami-
cal structure factors may allow us also to study the dynam-
ics of entanglement. Our method can be tested on spin
chains with a finite number of sites, as, for example, in
molecular magnetic materials [30].

In suitable physical systems where the constituents can
be addressed individually (such as polarized photons) the
witnesses can be measured locally. Our witnesses are
suitable for detecting a diversity of states, such as Dicke
states, nonsymmetric versions of Dicke states, GHZ states,
and superpositions of these. The presented construction
also allows variations: in principle, arbitrary signs of the
constituting two-point correlations are possible. This could
be useful for the detection of various entangled states in
photon experiments. Thus, we offer more generality than
previous two-point entanglement witnesses like spin
squeezing inequalities (see Ref. [31] for an overview).
The question of whether the witnesses (that are constructed

for a finite number of subsystems) are also meaningful in
the thermodynamical limit is still under investigation.
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