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The rotational properties of a mixture of two distinguishable Bose gases that are confined in a ring

potential provide novel physical effects that we demonstrate in this study. Persistent currents are shown to

be stable for a range of the population imbalance between the two components at low angular momentum.

At higher values of the angular momentum, even small admixtures of a second species of atoms make the

persistent currents highly fragile.
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Introduction.—One of the most fascinating phenomena
associated with superfluidity [1] is the stability of persis-
tent currents. In some remarkable experiments that have
been performed recently, Bose-Einstein condensed atoms
were confined in annular traps [2,3], in which persistent
currents could be created and observed [4]. In an earlier
experiment, the resistant-free motion of an object through a
Bose-Einstein condensate below some critical velocity was
also observed [5].

Motivated by these recent advances, in the present study
we consider a mixture of two (distinguishable) Bose gases
at zero temperature [6,7], that are confined to one dimen-
sion with periodic boundary conditions, i.e., in a ring
potential, deriving a series of exact and analytic results.

The main issue of our study concerns the rotational
properties of this system and the stability of persistent
currents. In higher dimensions it has been argued that
mixtures of Bose gases do not support persistent currents,
because there is no energy cost for the system to get rid of
its circulation (i.e., the line integral of the velocity field
around a closed loop that encircles the ring), as long as
angular momentum can be transferred between the two
species [8]. Here, we demonstrate that when the total
angular momentum per atom varies between zero and
unity, currents are stable for a certain range of the ratio
of the populations of the two species. We calculate the
critical strength of the coupling for a given value of this
ratio, which we determine analytically and exactly. On the
other hand, for higher values of the angular momentum per
atom, persistent currents in one-component systems are
very fragile, as even small admixtures of a second species
of atoms destabilize the currents.

Model.—Assuming a ring potential (which corresponds
to a very tight annular trap along the transverse direction
[9]), the Hamiltonian of the system that we study for the

two components that we label as A and B is H ¼ HAA þ
HBB þ ~UAB

PNA;NB

i¼1;j¼1 �ð�i � �jÞ, where

Hkk ¼
XNk

i¼1

� @
2

2MkR
2

@2

@�2i
þ 1

2
~Ukk

XNk

i�j¼1

�ð�i � �jÞ; (1)

with k ¼ A; B. HereMk are the atom masses, while ~Ukk ¼
4�@2akk=ðMkRSÞ and ~UAB ¼ 2�@2aAB=ðMABRSÞ are the
matrix elements for zero-energy elastic atom-atom colli-
sions (all assumed to be positive), with MAB ¼ MAMB=
ðMA þMBÞ being the reduced mass. Also, R is the radius

of the annulus and S its cross section, with R � ffiffiffi
S

p
.

We start from the mean-field approximation, introducing
the order parameters of the two components �A and �B;
later we also go beyond the mean-field approximation,
diagonalizing the Hamiltonian H numerically and analyti-
cally. The resulting (coupled) nonlinear Gross-Pitaevskii-
like equations are

� @2�k

@�2
þ NkUkkj�kj2�k þ NlUklj�lj2�k ¼ �k�k;

(2)

where
R j�kj2d� ¼ 1. Here �k are the chemical potentials

divided by the kinetic energy " ¼ @
2=ð2MR2Þ, where we

have assumed for simplicity equal masses for the two
species, MA ¼ MB ¼ M. Also, Ukl ¼ ~Ukl=�, with k; l ¼
A; B.
Energetic stability, dynamic stability, and phase separa-

tion.—Before we turn to the rotational properties, let us
consider briefly the question of phase separation. In homo-
geneous systems it has been shown that the condition for
energetic stability of the homogeneous solution is [10–12]
U2

AB �UAAUBB < 0, and also UAA > 0, UBB > 0. One
may generalize this result for the case of a finite system,
taking into account the contribution of the kinetic energy.
The details of this calculation will be reported elsewhere.
Here we just mention that this more general condition is
�2
AB � �AA�BB < 1=4þ ð�AA þ �BBÞ=2, where we have

introduced the parameters �k;l ¼ Uk;l

ffiffiffiffiffiffiffiffiffiffiffi
NkNl

p
=ð2�Þ for con-

venience (these parameters give the ratio between the
typical interaction energy and the typical kinetic energy).
As one crosses the phase boundary, the two clouds develop
sinusoidal variations in their density, with an amplitude
that increases continuously from zero.
The dynamic stability of the system may be examined

with use of the (two coupled) Bogoliubov–de Gennes
equations. Again, the details of this calculation will be
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reported elsewhere. The dispersion that one obtains

from this analysis is !2 ¼ m4 þm2ð�AA þ �BB �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�AA � �BBÞ2 þ 4�2

AB

q
Þ. The requirement of a real !

implies the same condition as that for energetic stability.
Effect of the periodicity on the dispersion relation.—The

one-dimensional motion that we have assumed in our
calculation, in combination with the periodic boundary
conditions have some important consequences on the dis-
persion relation, which are also present in the case of a
single-component gas, as shown by Bloch [13]. The matrix
elements that determine the interaction energy do not
depend on the quantum numbers of the angular momentum
m, and also the center of mass coordinate separates from
the relative coordinates. As a result, solving the problem in
the interval 0 � l � 1, where l ¼ ðLA þ LBÞ=ðNA þ NBÞ
is the angular momentum per particle, then exciting the
center of mass motion, we may evaluate the spectrum at
any other interval n � l � nþ 1. More specifically, if
�A;0 ¼ P

mcm�m and �B;0 ¼ P
mdm�m are the order pa-

rameters for 0 � l � 1, then the order parameters for n �
l � nþ 1 are given by �A;n ¼ P

mcm�mþn, and �B;n ¼P
mdm�mþn.
Denoting the energy per atom for n � l � nþ 1 as

EnðlÞ=N, then EnðlÞ=N ¼ E0ðl0Þ=N þ n2 þ 2nl0, where
0 � l0 � 1, and l ¼ l0 þ n. Therefore, EnðlÞ=N � l2 ¼
E0ðl0Þ=N � l20, which are both equal to a periodic function

eðlÞ, i.e., eðl0 þ nÞ ¼ eðl0Þ. Thus, we write quite generally
that

EnðlÞ=N ¼ l2 þ eðlÞ ¼ ðl0 þ nÞ2 þ eðl0Þ: (3)

In other words, the energy of the system for n � l � nþ 1
consists of an envelope part, i.e., the first term on the right,
which arises because of the center of mass excitation, plus
a periodic part eðlÞ.

Furthermore, the function eðl0Þ is symmetric around
l0 ¼ 1=2 (an example of this symmetry is demonstrated
below, where it is shown that E0=N is linear for 0 � l �
xB ¼ 1� xA and xA � l � 1). To see this, let us consider
the states �R

A ¼ P
mcm�1�m, and �

R
B ¼ P

mdm�1�m, with
an l0 equal to 1� l, or lþ l0 ¼ 1. It turns out that the
difference in the energy per particle in the states �R

A, �
R
B,

and �A, �B is �E=N ¼ l0 � l. However, according to
Eq. (3), �E=N ¼ l0 � lþ eðl0Þ � eðlÞ, and therefore
eðl0Þ ¼ eðlÞ, which means that eðl0Þ is indeed symmetric
around l0 ¼ 1=2.

Rotational properties.—Since, according to what was
mentioned above, the dispersion relation is quasiperiodic,
in order to study the rotational properties of the gas, we
restrict ourselves to the interval 0 � l � 1. We introduce
the variables xA ¼ NA=ðNA þ NBÞ and xB ¼ NB=ðNA þ
NBÞ, and assume without loss of generality that xB < xA,
with xA þ xB ¼ 1. In what follows we also assume equal
scattering lengths, and therefore UAA ¼ UBB ¼ UAB ¼ U.
The condition of equal scattering lengths is not far from
reality, with rubidium atoms in different hyperfine states

being an example. Interestingly, in this case there is a series
of exact, analytic results. If this condition is weakly vio-
lated, the deviations from these results will be small.
According to the result mentioned earlier, for UAA ¼

UBB ¼ UAB the gas is in the homogeneous phase, and it is
both dynamically, as well as energetically, stable. In this
case, we find that for 0 � l � xB and xA � l � 1, only the
states with�0 and�1 are (macroscopically) occupied. The
interaction energy of the gas is equal to that of the non-
rotating system, since the total density nð�Þ ¼ nAð�Þ þ
nBð�Þ is homogeneous. As a result, the total energy of
the gas varies linearly with l. These are exact results within
the mean-field approximation. On the other hand, for xB <
l < xA more states contribute to the order parameters,
while the dispersion relation is not linear in this interval.
More specifically, let us consider the states of some fixed
expectation value of the angular momentum l, �A;0 ¼
c0�0 þ c1�1, and �B;0 ¼ d0�0 þ d1�1, with xAjc1j2 þ
xBjd1j2 ¼ l, and also jc0j2 þ jc1j2 ¼ 1, jd0j2 þ jd1j2 ¼ 1.
The above states have a maximum value of l equal to unity.
Evaluating the total energy E0 and minimizing it, it turns
out that

E0=N ¼ lþ �½1=2þ ðxAjc0jjc1j � xBjd0jjd1jÞ2�; (4)

where N ¼ NA þ NB is the total number of atoms and � ¼
NU=ð2�Þ. For 0 � l � xB and xA � l � 1, the last two
terms may be set equal to each other, which means that
E0=N ¼ lþ �=2. Remarkably, any other single-particle
state cannot lower the energy and its occupancy is exactly
zero. The occupancies of the single-particle states with
m ¼ 0 and m ¼ 1 are c20 ¼ ðxA � lÞð1� lÞ=½xAð1� 2lÞ�,
and c21 ¼ lðxB � lÞ=½xAð1� 2lÞ�; d20 and d21 are given by

similar formulas, with xA and xB interchanged. The same
expressions hold for a mixtures of two Bose gases that are
confined in harmonic traps [14], but in this case the energy
is parabolic and not linear in l.
Persistent currents.—Let us now examine the question

of stability of persistent currents. In the case of only one
component, for � > 3=2, the system supports persistent
currents at l ¼ 1 [15,16]. As we saw earlier, if one starts
with xA ¼ 1 and xB ¼ 0 and increases the population of
the B component, the dispersion relation is exactly linear
for xA � l � 1. The question is thus whether the dispersion
relation has a local minimum at l ¼ xA, where we know the
order parameters exactly, i.e., �A;0 ¼ �1, and �B;0 ¼ �0.

This fact allows us to examine the region just below l ¼ xA
(and the region just above l ¼ xB, if necessary).
More specifically, if � ¼ xA � l is a small and positive

quantity, one may argue that c20 / c22 / �, while d2�1 /
d21 / �. The asymmetry between the two species arises
because c1 ¼ 1 and d0 ¼ 1 at l ¼ xA. As a result, for
component A, c0c

2
1c2 / c21c

2
2, which implies that c2 / c0,

while for component B, d�1d
2
0d1 / d2�1d

2
0, and thus d�1 /

d1. All the other coefficients are of higher order in �, and
thus negligible as l ! x�A . Since the stability of the persis-
tent currents is determined from the slope of the dispersion
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relation, we may keep only the terms which are linear in �.
Under these assumptions we find that the energy per par-
ticle is, up to �,

E0=N � �=2 � lþ 2xAc
2
2 þ 2xBd

2�1 þ �½xAðc0 þ c2Þ
þ xBðd�1 þ d1Þ�2; (5)

where we have expressed c1 in terms of c0 and c2, and d0 in
terms of d�1 and d1 through the normalization conditions.
The above expression has to be minimized under the con-
straint of fixed angular momentum, l ¼ xAðc21 þ 2c22Þ þ
xBð�d2�1 þ d21Þ ¼ xA � �. We do this by minimizing
the function E0=N þ �½xAðc21 þ 2c22Þ þ xBð�d2�1 þ d21Þ�,
where � is a Lagrange multiplier. The resulting equation
that connects �, xA, xB, and � is �ð�2 � 4Þ½�þ 2ðxB �
xAÞ� ¼ 2�. For any �, the above equation has three solu-
tions, two of which are physically relevant. The one ap-
pears for 0 � � � 2ðxA � xBÞ ¼ 2ð2xA � 1Þ, which is
� 2, and the other one for � � 2. The first solution gives
the critical value of �, �cr, which gives a zero slope of the
spectrum E0=N for 0 � l � 1, at l ¼ x�A as function of xA,
namely,

�cr ¼ ð3=2Þ=ð4xA � 3Þ: (6)

The above expression not only gives the exact value of �cr

for xA ¼ 1 and xB ¼ 0 (which is 3=2, as mentioned ear-
lier), but also for any (allowed) value of xA. Since the above
function diverges for xA ! 3=4, persistent currents are
only possible for 3=4< xA � 1.

In the intervals of higher angular momentum, n � l �
nþ 1 with n � 0, the situation with stability is rather
different. According to Eq. (3) the periodic part of the
dispersion relation eðlÞ repeats itself in each of these
intervals with a slope that is equal to ðnþ 1Þ2 � n2 ¼
2nþ 1 ¼ 3; 5; 7; . . . . For n � 0 one has to use the other
solution for � > 2ðxA � xBÞ. For the case of only one
component, xA ¼ 1 and xB ¼ 0, this solution implies that
persistent currents are stable for the values �cr ¼ ð2nþ
1Þð2nþ 3Þ=2, at l ¼ nþ 1. While the above states support
persistent currents, as soon as xB becomes nonzero—even
if xB ! 0 but finite—the other solution that lies in the
interval 0 � � � 2ðxA � xBÞ has a lower energy, and de-
stabilizes the current. In other words, the currents are very
fragile with respect to admixtures of a second species of
atoms. As a result, the system cannot support persistent
currents at any interval other than the first one with n � 0,
for xB � 0. Figure 1 shows �cr of Eq. (6), as well as the
points corresponding to �cr ¼ ð2nþ 1Þð2nþ 3Þ=2 for
n ¼ 1, 2, and 3.

To gain some physical insight on the above results, we
note that for 0 � l � 1, since the system is in the state
�A ¼ �1 and �B ¼ �0 at l ¼ xA, it may reduce its angu-
lar momentum by either transferring some atoms of species
A from �1 to �0, or some atoms of species B from �0 to
��1. However, the second option is energetically expen-
sive because the angular momentum of ��1 is opposite to
the angular momentum of the system. In the second inter-

val 1 � l � 2 (and in any higher one) the system is in the
state �A ¼ �2 and �B ¼ �1 when l ¼ 1þ xA. In this
case, however, the most efficient way for the gas to reduce
its angular momentum is to transfer atoms of species B
from�1 to�0, and not to transfer atoms of species A from
�2 to �1, as in the first interval. It is precisely this
asymmetry between the first and any other interval that
allows stable persistent currents in the first interval only,
but not in any other.
Beyond the mean-field approximation.—To go beyond

the mean-field approximation, we have also performed
numerical diagonalization of the Hamiltonian for fixed
numbers of NA, NB, and L units of angular momentum.
In the case of one component, we have confirmed the
results derived within the mean-field approximation �cr ¼
3=2 for n ¼ 0, and �cr ¼ 15=2 for n ¼ 1. What is even
more interesting is the lowest eigenenergy of the
Hamiltonian for NA ¼ 17, NB ¼ 0, as well as for NA ¼
15, NB ¼ 2, in the range 0 � L � 38, including all the
single-particle states with jmj � 7, for U ¼ �, which is
shown in Fig. 2 [the corresponding value of � has to be
calculated according to the formula � ¼ ðN � 1ÞU=ð2�Þ,
which gives � ¼ 8]. Figure 2 indicates clearly the meta-
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FIG. 1. The critical coupling �cr given by Eq. (6), in the
interval 0 � l � 1, as a function of xA, for a ring potential.
The points at xA ¼ 1 show �cr for the higher intervals of l, as
explained in the text.
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FIG. 2. The lowest eigenenergies of the Hamiltonian for NA ¼
17, NB ¼ 0 (higher, dashed curve), as well as for NA ¼ 15,
NB ¼ 2 (lower, solid curve), with U ¼ �, in the range 0 � L �
38, in the truncated space of single-particle states with jmj � 7.
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stability of the currents for L ¼ NA and L ¼ 2NA when
there is only one component. With the addition of even a
small second component, the local minimum around L ¼
2NA disappears, destroying the metastable current, while
the minimum around L ¼ NA still exists [�cr � 2:83, ac-
cording to Eq. (6)], in agreement with the mean-field
approximation.

We have also found numerically that for 0 � L � NB

(and NA � L � NA þ NB), the (whole) excitation spec-
trum is given by the formula EqðLÞ ¼ LþU=ð2�Þ½q2 þ
ðN þ 1� 2LÞqþ NðN � 1Þ=2� L�, where q ¼
0; 1; 2; . . . in the truncated space of single-particle states
with m ¼ 0 and 1 (the only ones which are macroscopi-
cally occupied in the limit of large N). The lowest energy
per particle E0ðLÞ=N ¼ lþ �=2 agrees with the result of
mean field in the limit N ! 1, L ! 1 with L=N ¼ l
(finite) and NU finite.

A more specific case of the above spectrum may even be
derived analytically with use of the Bogoliubov transfor-
mation, for L ¼ NB (or L ¼ NA), within the same trun-
cated space of the single-particle states with m ¼ 0 and 1.
Within the Bogoliubov approximation, the Hamiltonian
takes the form in this case

H ¼ NB þU=ð2�Þ½NðN � 1Þ=2þ ðN=2Þðay1a1 þ by0b0Þ
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

NANB

p ða1b0 þ ay1b
y
0 Þ�; (7)

where a1 is the annihilation operator of a boson of species
A with angular momentum m ¼ 1, and b0 is the annihila-
tion operator of species B withm ¼ 0. This Hamiltonian is
diagonalized with a Bogoliubov transformation, which
implies that the eigenvalues are (assuming, for example,
that NA > NB)

E qðNBÞ ¼ NB þ U

2�

�
N

2
ðN � 2Þ þ ðNA � NBÞð2qþ 1Þ

�
:

(8)

We then find that the difference EqðL ¼ NBÞ � EqðL ¼
NBÞ ¼ Uqðqþ 1Þ / 1=N, and thus vanishes for large N.

Conclusions.—This study provides an interesting illus-
tration of the physical origin of persistent currents and,
more generally, of superfluidity. The extra degrees of free-
dom due to the second component, combined with the
assumed one-dimensionality and the periodicity of the
Hamiltonian, introduce novel physical effects, which
have not been known in the physics of the ‘‘traditional’’
superfluids.

More specifically, (i) in one-component systems, suffi-
ciently high values of the coupling give rise to persistent
currents [1]. In the present case, unless the population of
the second species is sufficiently small—in which case one
goes back to the one-component case—the second species
provides an energetically inexpensive way for the system
to get rid of its circulation: the node that is necessary to
form in the component that carries the circulation, in order
for the circulation to escape from the ring, is filled by the

second component, very much like the coreless vortices
studied in higher dimensions. (ii) The reduced dimension-
ality introduces another remarkable effect: while meta-
stability of persistent currents is absent in two-
component systems in higher dimensions [8,14], here the
assumed one-dimensional motion makes it possible for
persistent currents to be stable, at least under specific
conditions. (iii) The assumed periodicity in the
Hamiltonian reflects itself on the dispersion relation, which
is quasiperiodic, as in the one-component problem. On the
other hand, while persistent currents corresponding to the
first interval of the angular momentum of the quasiperiodic
part of the spectrum are stable, for higher values of the
angular momentum, persistent currents are highly fragile,
even for a very small admixture of a second species. This
result is also in sharp contrast to the one-component case.
The results presented in our study definitely deserve

experimental investigation, in order for our predictions to
be confirmed. One effect that deserves both theoretical, as
well as experimental, attention is the deviation from the
one-dimensional motion assumed here. One may argue that
as this deviation increases, competing mechanisms change
the behavior of the system, interpolating between one- and
two- or three-dimensional motion, thus giving rise to rich
physical effects.
Last but not least, in addition to the above more theo-

retical remarks, the large degree of tunability of the persis-
tent currents that we have demonstrated here also makes
these systems very appealing in terms of future technologi-
cal applications.
We acknowledge financial support from the Swedish

Research Council and the Swedish Foundation for
Strategic Research.

[1] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[2] S. Gupta et al., Phys. Rev. Lett. 95, 143201 (2005).
[3] S. E. Olson et al., Phys. Rev. A 76, 061404(R) (2007).
[4] C. Ryu et al., Phys. Rev. Lett. 99, 260401 (2007).
[5] C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999).
[6] E. J. Mueller and T. L. Ho, Phys. Rev. Lett. 88, 180403

(2002).
[7] V. Schweikhard et al., Phys. Rev. Lett. 93, 210403 (2004).
[8] Tin-Lun Ho, Phys. Rev. Lett. 49, 1837 (1982).
[9] Conditions of quasi-one-dimensional motion have already

been achieved; see, e.g., A. Görlitz et al., Phys. Rev. Lett.
87, 130402 (2001).

[10] P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).
[11] E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).
[12] C. J. Pethick and H. Smith, Bose-Einstein Condensation in

Dilute Gases (Cambridge University Press, Cambridge,
England, 2002).

[13] F. Bloch, Phys. Rev. A 7, 2187 (1973).
[14] S. Bargi et al., Phys. Rev. Lett. 98, 130403 (2007).
[15] R. Kanamoto et al., Phys. Rev. A 68, 043619 (2003).
[16] G.M. Kavoulakis, Phys. Rev. A 69, 023613 (2004).

PRL 103, 100404 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

100404-4


