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We derive a standard quantum limit for probing mechanical energy quantization in a class of systems

with mechanical modes parametrically coupled to external degrees of freedom. To resolve a single

mechanical quantum, it requires a strong-coupling regime—the decay rate of external degrees of freedom

is smaller than the parametric coupling rate. In the case for cavity-assisted optomechanical systems, e.g.,

the one proposed by Thompson et al. [Nature (London) 452, 72 (2008)], zero-point motion of the

mechanical oscillator needs to be comparable to the linear dynamical range of the optical system which is

characterized by the optical wavelength divided by the cavity finesse.
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Introduction.—Recently, significant cooling of mechani-
cal modes of harmonic oscillators has been achieved by
extracting heat through parametric damping or active feed-
back [1,2]. Theoretical calculations suggest that oscillators
with a large thermal occupation number (kBT � @!m) can
be cooled to be close to their ground state, if they have high
enough quality factors [3]. Once the ground state is ap-
proached, many interesting studies of macroscopic quan-
tum mechanics can be performed, e.g., teleporting a
quantum state onto mechanical degrees of freedom [4]
and creating quantum entanglement between a cavity
mode and an oscillator [5] and between two macroscopic
test masses [6]. Most proposals involve the oscillator po-
sition linearly coupled to photons, in which case the quan-
tum features of the oscillator, to a great extent, are
attributable to the quantization of photons. In order to
probe the intrinsic quantum nature of an oscillator, one
of the most transparent approaches is to directly measure
its energy quantization, and quantum jumps between dis-
creet energy eigenstates. Since linear couplings alone will
not project an oscillator onto its energy eigenstates, non-
linearities are generally required [7–9]. For cavity-assisted
optomechanical systems, one experimental scheme, pro-
posed in the pioneering work of Thompson et al. [1], is to
place a dielectric membrane inside a high-finesse Fabry-
Perot cavity, forming a pair of coupled cavities [10]. If the
membrane is appropriately located, a dispersive coupling
between the membrane position and the optical field is
predominantly quadratic, allowing the detection of me-
chanical energy quantization.

In this Letter, we show that in the experimental setup of
Thompson et al. the optical field also couples linearly to
the membrane. Because of finiteness of cavity finesse

(either intentional for readout or due to optical losses),
this linear coupling introduces quantum backaction.
Interestingly, it sets forth a simple standard quantum limit,
which dictates that only those systems whose cavity-mode
decay rates are smaller than the optomechanical coupling
rate can successfully resolve energy levels. We will further
show that a similar constraint applies universally to all
experiments that attempt to probe mechanical energy quan-
tization via parametric coupling with external degrees of
freedom (either optical or electrical).
Coupled cavities.—Optical configuration of coupled

cavities is shown in Fig. 1. Given the specification in
Ref. [1], transmissivities of the membrane and end mirrors
are quite low, and thus a two-mode description is appro-
priate [11,12], with the corresponding Hamiltonian

Ĥ ¼@!mðq̂2þ p̂2Þ=2þ@!0ðâyâþ b̂yb̂Þ
�@!sðâyb̂þ b̂yâÞþ@G0q̂ðâyâ� b̂yb̂Þ
þĤ extþĤ �: (1)

FIG. 1 (color online). The left panel presents the schematic
configuration of coupled cavities in the proposed experiment [1].
The right panel shows optical modes, and we denote reflectivity
and transmissivity of the optical elements by ri and ti (i ¼
1; 2; m). DAQ stands for data acquisition.

PRL 103, 100402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

0031-9007=09=103(10)=100402(4) 100402-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.100402


Here q̂, p̂ are normalized position and momentum of the

membrane; â, b̂ are annihilation operators of cavity modes
in the individual cavities (both resonate at !0); !s �
tmc=L is the optical coupling constant for â and b̂, through

transmission of the membrane [12]; G0 � 2
ffiffiffi
2

p
!0xq=L is

the optomechanical coupling constant with L denoting the

cavity length and zero-point motion xq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2m!mÞ

p
;

Ĥ ext and Ĥ � correspond to the coupling of the system

to the environment and quantify the fluctuation and dis-
sipation mechanism. By introducing optical normal modes,

namely, the common mode ĉ � ðâþ b̂Þ= ffiffiffi
2

p
and differen-

tial mode d̂ � ðâ� b̂Þ= ffiffiffi
2

p
,

Ĥ =@¼!m

2
ðq̂2þp̂2Þþ!�ĉyĉþ!þd̂yd̂þG0q̂ðĉyd̂þd̂yĉÞ

þið ffiffiffiffiffiffiffiffi
2�c

p
ĉyĉinþ

ffiffiffiffiffiffiffiffi
2�d

p
d̂yd̂in�H:c:ÞþĤ �=@; (2)

where !� � !0 �!s and in the Markovian approxima-

tion Ĥ ext is written out explicitly in the second line (with
�c;d denoting decay rates and H.c. for Hermitian

conjugate).
Before analyzing the detailed dynamics, here we follow

Thompson et al. [1] and Bhattacharya and Meystre [11] by
assuming !m � !s and G0 � j!þ �!�j ¼ 2!s, analo-
gous to the dispersive regime in the photon-number count-
ing experiment with a superconducting qubit [13,14]. This

allows us to treat @G0q̂ðĉyd̂þ d̂yĉÞ as a perturbation and
diagonalize the Hamiltonian formally. Up to G2

0=ð2!sÞ2,
the optical and optomechanical coupling parts of the origi-
nal Hamiltonian can be written as

Ĥ =@ ¼
�
!� �G2

0q̂
2

2!s

�
ôyôþ

�
!þ þG2

0q̂
2

2!s

�
êyê: (3)

At first sight, frequency shift of the eigenmodes ô and ê is
proportional to q̂2. Since frequency separation of two
normal modes is 2!s � �c;d, they can be independently

driven and detected. Besides, with �c;d < !m, only aver-

aged membrane motion is registered, and �̂q2 ¼ N̂ þ 1=2

with N̂ denoting the number of quanta. Therefore, previous
authors had concluded that such a purely dispersive cou-
pling allows quantum nondemolition measurements of the
mechanical quanta.

However, the new eigenmodes ô and ê are given by

ô ¼ ĉ� ½ðG0d̂Þ=ð2!sÞ�q̂; ê ¼ d̂þ ½ðG0ĉÞ=ð2!sÞ�q̂:
(4)

If we pump ĉ with classical amplitude �c and left d̂ in a
vacuum state, the detected mode ô will have a negligible
linear response. However, the idle mode ê �
½G0 �c=ð2!sÞ�q̂, which is dominated by linear coupling. If

we choose to drive d̂, the role of ô and ê will simply swap.
Such linear coupling can potentially demolish the energy
eigenstates that we wish to probe. We can make an order-
of-magnitude estimate. The optomechanical coupling term

in Eq. (2), at the linear order, reads G0q̂ð �c d̂þ �c�d̂yÞ.

According to the Fermi’s golden rule, it causes decoher-
ence of the energy eigenstate near the ground level at a rate
of

��1
dec ¼ G2

0j �cj2 ~Sd̂ð�!mÞ � G2
0j �cj2�d=ð2!2

sÞ; (5)

where we have assumed that ĉ is on resonance, and

~S d̂�
Z
dtei!thd̂ðtÞd̂yð0Þi¼2�d=½ð!�2!sÞ2þ�2

d�: (6)

On the other hand, from Eq. (3) and linear response theory
[15], the measurement time scale to resolve the energy

eigenstate (i.e., measuring N̂ with a unit error) with a shot-
noise limited sensitivity is approximately given by

�mea � ½�2
c!

2
s=ðG4

0j �cj2Þ�~Sĉð0Þ ¼ 2!2
s�c=ðG4

0j �cj2Þ; (7)

where ~Sĉð0Þ is the spectral density of ĉ at zero frequency.
Requiring �mea 	 �dec yields

ð�c�d=G
2
0Þ & 1: (8)

In the case when transmissivity of end mirrors t1 ¼ t2 �
t0, we have �c ¼ �d ¼ ct20=ð2LÞ. Defining the cavity fi-

nesse as F � �=t20, the above inequality reduces to

�=ðF xqÞ & 8
ffiffiffi
2

p
. Therefore, to probe mechanical energy

quantization, it requires a strong-coupling regime [cf.
Eq. (8)], or equivalently, for such an optomechanical sys-
tem, zero-point mechanical motion xq to be comparable to

linear dynamical range �=F of the cavity.
We now carry out a detailed analysis of the dynamics

according to the standard input-output formalism [16]. In
the rotating frame at the laser frequency !þ, the nonlinear
quantum Langevin equations are given by

_̂q ¼ !mp̂; (9)

_̂p ¼ �!mq̂� �mp̂�G0ðĉyd̂þ d̂yĉÞ þ �th; (10)

_̂c ¼ ��cĉ� iG0q̂ d̂þ
ffiffiffiffiffiffiffiffi
2�c

p
ĉin; (11)

_̂d ¼ �ð�d þ 2i!sÞd̂� iG0q̂ ĉþ
ffiffiffiffiffiffiffiffi
2�d

p
d̂in: (12)

Here the mechanical damping and associated Brownian

thermal force �th originate from Ĥ � under the

Markovian approximation. These equations can be solved
perturbatively by decomposing every Heisenberg operator

�̂ into different orders such that �̂ ¼ ��þ ��̂ð1Þ þ
�2�̂ð2Þ þO½�3�. We treat G0=ð2!sÞ and vacuum fluctua-

tions
ffiffiffiffiffiffiffiffi
2�c

p
ĉð1Þin and

ffiffiffiffiffiffiffiffi
2�d

p
d̂ð1Þin (simply denoted by

ffiffiffiffiffiffiffiffi
2�c

p
ĉin

and
ffiffiffiffiffiffiffiffi
2�d

p
d̂in in later discussion) as being of the order of

� ð�1Þ.
To the zeroth order, �c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I0=ð�c@!0Þ
p

with I0 denoting
the input optical power and �d ¼ 0. Up to the first order, the

radiation pressure term reads G0 �c½d̂ð1Þ þ d̂ð1Þy� ( �c is set to
be real by choosing an appropriate phase reference). In the
frequency domain, it can be written as

PRL 103, 100402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

100402-2



~F rp ¼
2

ffiffiffiffiffiffi
�d

p
G0 �c½ð�d � i!Þ~v1 � 2!s~v2� þ 4G2

0 �c
2!s~q

ð!þ 2!s þ i�dÞð!� 2!s þ i�dÞ ;

(13)

where ~v1, ~v2, and ~q are Fourier transformations of v̂1ðtÞ �
ðd̂in þ d̂yinÞ=

ffiffiffi
2

p
, v̂2ðtÞ � ðd̂in � d̂yinÞ=ði

ffiffiffi
2

p Þ, and q̂ðtÞ, re-

spectively. The part, containing vacuum fluctuations, is

the backaction F̂BA, which induces the quantum limit.
The other part proportional to ~q is the optical-spring effect.
Within the time scale for measuring energy quantization,
of the order of ��1

c ð� ��1
m Þ, the positive damping can be

neglected, but the negative rigidity has an interesting con-
sequence—it modifies !m to an effective !effð<!mÞ.
Correspondingly, the position of the high-Q membrane is

q̂ðtÞ ¼ q̂m þ�2
Z t

0
dt0 sin!effðt� t0Þ½F̂BAðt0Þ þ �thðt0Þ�

(14)

with � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!m=!eff

p
. The free quantum oscillation q̂m ¼

�ðq̂0 cos!efftþ p̂0 sin!efftÞ and q̂0 and p̂0 are the initial
position and momentum normalized with respect toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!effÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@m!eff

p
.

The dispersive response is given by the second-order
perturbation O½�2�. Adiabatically eliminating rapidly os-
cillating components and assuming !m � !s, which can
be shown to maximize the signal-to-noise ratio, we obtain

ĉ ð2ÞðtÞ ¼ �iG0

Z t

0
dt0e��cðt�t0Þq̂ðt0Þd̂ð1Þðt0Þ

� G2
eff �c N̂ðtÞ=ð2i�c!sÞ: (15)

Here Geff � �G0, and N̂ðtÞ � N̂0 þ �N̂ðtÞ contains the

number of mechanical quanta N̂0 � ðq̂20 þ p̂2
0Þ=2 and the

noise term �N̂ðtÞ due to the backaction and thermal noise.

To read out N̂ðtÞ, we integrate output phase quadrature for a
duration �. According to the input-output relation ĉout þ
ĉin ¼

ffiffiffiffiffiffiffiffi
2�c

p
ĉ, the estimator reads

Ŷð�Þ ¼
Z �

0
dt½û2ðtÞ �G2

eff �c N̂ðtÞ=ð ffiffiffiffiffiffi
�c

p
!sÞ�; (16)

where û2 � ðĉin � ĉyinÞ=ði
ffiffiffi
2

p Þ. For the Gaussian and

Markovian process, the correlation function hĉ2ðtÞĉy2 ðt0Þi ¼
�ðt� t0Þ=2. For typical experiments, the thermal occupa-
tion number �nth � kBT=ð@!mÞ is much larger than unity,
and h�thðtÞ�thðt0Þi � 2�m �nth�ðt� t0Þ. Through evaluating
the four-point correlation function of backaction noise and

�thðtÞ in h�N̂ðtÞ�N̂ðt0Þi, we obtain the resolution �N as a
function of �

�N2 ¼
�
�c!

2
s

G4
eff �c

2�

�
þ 5

6

�
�dG

2
eff �c

2�

2
ffiffiffi
2

p
!2

s

�
2 þ 5

6

�
�mkBT�ffiffiffi
2

p
@!eff

�
2
:

(17)

In order to successfully observe energy quantization, the
following conditions are simultaneously required: (i) the
resolution �N2 should have a minimum equal or less than

unity; (ii) this minimum should be reachable within � that
is longer than the cavity storage time 1=�c (which in turn
must be longer than the oscillation period 1=!eff of the
membrane); (iii) the system dynamics should be stable
when taking into account optical rigidity which is approxi-
mately equal to G2

0 �c
2=!s for !m � !s.

Specifically, the standard quantum limit in condition (i),
set by the first two terms in �N2, gives �c�d=G

2
eff & 1, or

equivalently ð�c�d=G
2
0Þ & �2. If we neglect the optical-

spring effect (� ¼ 1), we simply recover Eq. (8). A strong
negative optical rigidity (!eff � !m, i. e., � � 1) can
significantly enhance the effective coupling strength and
ease the requirements on optomechanical properties.
However, a small !eff also makes the system susceptible
to the thermal noise. Taking into account all the above

conditions, the optimal!eff ¼ !m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nth=Qm

p
with mechani-

cal quality factor Qm � !m=�m, and there is a nontrivial
constraint on the thermal occupation number, which reads

ð �nth=QmÞ 	 ½G2
0=ð!s�cÞ�2=3.

For a numerical estimate, we use a similar specification
as given in Ref. [1] but assume a slightly higher mechani-
cal quality factor Qm, lower environmental temperature T,
and lower input optical power I0 such that all mentioned
conditions are satisfied. The parameters are the following:
m ¼ 50 pg, !m=ð2�Þ ¼ 105 Hz, Qm ¼ 3:2
 107, � ¼
532 nm, L ¼ 3 cm, rm ¼ 0:9999, F ¼ 6
 105, T ¼
0:1 K, and I0 � 5 nW. The resulting resolution �N is
shown in Fig. 2, and we are able to resolve single mechani-
cal quantum when � � 0:1 ms.
Even though we have been focusing on the double-sided

setup where t1 � t2, the quantum limit also exists in the
single-sided case originally proposed in Ref. [1]. Ideally, a
single-sided setup consists of a totally reflected end mirror,
and the vacuum fluctuations only enter from the front
mirror. Therefore, the quantum noises inside two subcav-
ities have the same origin but different optical paths.
Through similar input-output calculations, we find that if
laser detuning is equal to �!s, the quantum noises de-
structively interfere with each other at low frequencies, due
to the same mechanism studied in great detail in Ref. [17],
achieving an ideal quantum nondemolition measurement.
However, in reality, the end mirror always has some finite
transmission or optical loss which introduces uncorrelated

0.02 0.05 0.10 0.20 0.50
0.5

1.0

1.5
2.0

3.0

ms

Quantum
Thermal

N

Quantum

FIG. 2 (color online). The resolution �N for measuring me-
chanical energy quantization depending on the integration dura-
tion � with total noise (solid line) and quantum noise only
(dashed line).
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vacuum fluctuations. As it turns out, the quantum limit is
similar to Eq. (8), only with �c;d replaced by the damping

rate of two subcavities.
General systems.—Actually, the standard quantum limit

obtained above applies to all schemes that attempt to probe
mechanical energy quantization via parametric coupling.
Let us consider n mechanical modes parametrically
coupled with n0 normal external modes, describable by
the following Hamiltonian:

Ĥ ¼ Xn

	¼1

@�	ðq̂2	 þ p̂2
	Þ=2þ

Xn0

i¼1

@!iâ
y
i âi

þ Xn0

i;j¼1

Xn

	¼1

@
ij	q̂	ðâyi âj þ âyj âiÞ þ Ĥ ext þ Ĥ �:

(18)

Here Greek indices identify mechanical modes and Latin
indices identify external modes; �	 and !i are eigenfre-
quencies; q̂	, p̂	 are normalized positions and momenta; âi
are annihilation operators of the external degrees of free-
dom; and 
ij	 ¼ 
ji	 are coupling constants. Similarly, we

focus on the regime where j
ij	j � j!i �!jj (dispersive)
and �	 � j!i �!jj (adiabatic) and obtain

Ĥ ¼Xn

	¼1

@�	ðq̂2	þ p̂2
	Þ=2þ

Xn0

i¼1

@!0
iô

y
i ôiþĤ extþĤ �;

(19)

where, up to 
2
ij	=j!i �!jj2,

!0
i ¼ !i þ

X

	


ii	q̂	 þ
X

j�i

X

	

ð
ij	q̂	Þ2
!i �!j

: (20)

In order to have quadratic couplings between a pair of
external and mechanical modes, ô1 and q̂1, for instance,
we require that 
11	 ¼ 0 and 
1i	 ¼ 
1i1�1	, and then

!0
1 ¼ !1 þ

X

i�1


2
1i1

!1 �!i

q̂21: (21)

However, there still are linear couplings which originate
from idle modes. This is because, up to 
ij	=j!i �!jj,

ô i¼ âiþ
X

j�i


ij1âj
!i�!j

q̂1� âiþ 
1i1 �a1
!i�!1

q̂1 ði�1Þ; (22)

where â1 is replaced with its classical amplitude �a1, for
�a1 � âi. From Eqs. (21) and (22), both linear and disper-
sive couplings are inversely proportional to j!i �!1j.
Therefore, we only need to consider a tripartite system
formed by q̂1, ô1, and ô2 which is the closest to ô1 in fre-
quency. The resulting Hamiltonian is identical to Eq. (2),
and thus the same standard quantum limit applies.

Conclusion.—We have demonstrated the existence of a
quantum limit for probing mechanical energy quantization
in general systems where mechanical modes parametri-

cally interact with optical or electrical degrees of freedom.
This work will shed light on choosing the appropriate
parameters for experimental realizations.
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